• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 82
  • 28
  • 24
  • 20
  • 19
  • 15
  • 13
  • 13
  • 13
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Simulation of Engineered Nanostructured Thin Films

Cheung, JASON 01 April 2009 (has links)
The invention of the Glancing Angle Deposition (GLAD) technique a decade ago enabled the fabrication of nanostructured thin films with highly tailorable structural, electrical, optical, and magnetic properties. Here a three-dimensional atomic-scale growth simulator has been developed to model the growth of thin film materials fabricated with the GLAD technique, utilizing the Monte Carlo (MC) and Kinetic Monte Carlo (KMC) methods; the simulator is capable of predicting film structure under a wide range of deposition conditions with a high degree of accuracy as compared to experiment. The stochastic evaporation and transport of atoms from the vapor source to the substrate is modeled as random ballistic deposition, incorporating the dynamic variation in substrate orientation that is central to the GLAD technique, and surface adatom diffusion is modeled as either an activated random walk (MC), or as energy dependent complete system transitions with rates calculated based on site-specific bond counting (KMC). The Sculptured Nanostructured Film Simulator (SNS) provides a three-dimensional physical prediction of film structure given a set of deposition conditions, enabling the calculation of film properties including porosity, roughness, and fractal dimension. Simulations were performed under various growth conditions in order to gain an understanding of the effects of incident angle, substrate rotation, tilt angle, and temperature on the resulting morphology of the thin film. Analysis of the evolution of film porosity during growth suggests a complex growth dynamic with significant variations with changes in tilt or substrate motion, in good agreement with x-ray reflectivity measurements. Future development will merge the physical structure growth simulator, SNS, with Finite-Difference Time-Domain (FDTD) electromagnetics simulation to allow predictive design of nanostructured optical materials. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-03-31 13:22:11.843
82

Simulation der Nanostrukturbildung in Alkali-dotierten Fullerenschichten

Touzik, Andrei 17 March 2004 (has links)
This work presents theoretical background for the investigation of nanostructure formation in alkali-metal doped fullerene layers. A number of computational methods are used to describe structural transformation in the fullerene layer. They include tight-binding molecular dynamics, empirical molecular dynamics, Monte-Carlo calculations as well as other methods. The doped fullerene layers show the highest superconducting critical temperature among organic superconductors. A new electrochemical method of synthesis of potassium and rubidium fullerides has been recently developed by Professor Dunsch and coworkers in the department of electrochemistry and conductive polymers at IFW Dresden. The process of electrochemical doping is accompanied by several side effects, and one of them is nanostructure formation at the surface of the fullerene layer. In the present work an explanation is given for the nanostructure formation observed recently by scanning tunnel microscopy. The corresponding model is based on the concept of spontaneous phase separation that has been realized by kinetic Monte Carlo calculations. These calculations predict instability of initially homogeneous alkali-doped fullerene layers. Due to the significant gap in the Madelung energy formation of an alkali-poor and an alkali-reach phase is expected. The results of the Monte Carlo simulations point out that the particle size of the corresponding phases remains in the nanometer range. Interpretation of experimental data for metal deposition on fullerene substrates can be easily given in the framework of the phase separation concept as well. Metal clusters of the size order 50 to 100 nm emerge in course of electrochemical copper deposition on alkali-doped fullerene layers. The electrically conductive paths through the insulating fullerene layer are probably responsible for the inhomogeneous copper deposition under electrochemical conditions. A novel computer program has been developed in course of this work, which is designed as a distributed application. It can be used for diverse conventional and kinetic Monte Carlo calculations. / Die vorliegende Arbeit präsentiert theoretische Arbeiten, die das Ziel haben, die Nanostrukturbildung in dotierten Fullerenschichten zu verstehen. Diverse Rechenmethoden wurden verwendet, um die strukturellen Umwandlungen in der Fullerenschicht zu beschreiben. Die Tight-Binding-Molekulardynamik, die empirische Molekulardynamik und Monte-Carlo-Berechnungen sowie andere Methoden sind eingeschlossen. Die dotierten Fullerenschichten zeigen die höchste supraleitende kritische Temperatur unter den organischen Supraleitern. Eine neue elektrochemische Methode der Synthese von Kalium- und Rubidium-Fulleriden wurde vor kurzem von Professor Dunsch und Mitarbeitern in der Abteilung Elektrochemie und leitfähigen Polymere am IFW Dresden entwickelt. Der Prozess der elektrochemischen Dotierung wird von mehreren Nebenprozessen begleitet, und einer davon ist die Nanostrukturbildung an der Oberfäche der Fullerenschicht. In der vorliegenden Arbeit wird eine Erklärung für die Herausbildung der Nanostrukturen, die mit Hilfe von Rastertunnelmikroskopie beobachtet wurden, gegeben. Das entsprechende Modell basiert auf dem Konzept der spontanen Phasenentmischung und wird durch kinetische Monte-Carlo-Simulationen realisiert. Diese Simulationen sagen Instabilität der zunächst homogenen Alkali-dotierten Fullerenschichten voraus. Wegen des wesentlichen Unterschieds in der Madelungenergie ist die Herausbildung einer Alkalimetall-armen und einer Alkalimetall-reichen Phase zu erwarten. Die Ergebnisse der Monte-Carlo-Simulationen weisen darauf hin, dass die Teilchengröße der entsprechenden Phasen im Nanometer-Bereich bleibt. Im Rahmen des Phasenentmischungskonzepts können auch experimentelle Daten zur Metallabscheidung auf Fullerensubstraten problemlos interpretiert werden. Bei elektrochemischer Kupferabscheidung auf Alkali-dotierten Fullerenschichten entstehen Metallcluster der Größenordnung von 50 bis 100 nm. Die elektrisch leitfähige Pfade, die in einer isolierenden Matrix auftreten, sind wahrscheinlich für die ungleichmäßige Kupferabscheidung unter elektrochemischen Bedingungen verantwortlich. Ein neuartiges Computerprogramm wurde im Rahmen dieser Arbeit entwickelt, das als eine verteilte Anwendung entworfen ist. Damit können diverse konventionelle und kinetische Monte-Carlo-Simulationen durchgeführt werden.

Page generated in 0.0698 seconds