• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 20
  • 15
  • 5
  • 3
  • 1
  • Tagged with
  • 104
  • 104
  • 33
  • 33
  • 30
  • 24
  • 22
  • 21
  • 19
  • 17
  • 17
  • 16
  • 16
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Busca por oxidantes quirais para a transformação enantiosseletiva de compostos orgânicos de boro / Search for chiral oxidants for the enantioselective transformation of organic boron compounds

Martins, Rodrigo dos Santos 05 May 2017 (has links)
Neste trabalho, avaliou-se o potencial do uso de oxidantes quirais em oxidações enantiosseletivas de compostos orgânicos de boro. É de conhecimento geral que compostos orgânicos de boro, especialmente ésteres e ácidos borônicos são facilmente oxidados por hidroperóxidos em meio básico. No entanto, são escassos na literatura exemplos destas reações de modo enantiosseletivo. A fim de realizar as reações mencionadas, sintetizou-se os hidroperóxidos quirais TADOOH ({(4R,5R)-5-[(hidroperoxidifenil)metil]-2,2-dimetil-1,3-dioxolan-4il}difenilmetanol) e o hidroperóxido quiral derivado de carboidrato, 2,3-dideoxi1-O-oxidanil-4,6-di-O-pivaloil-α-D-eritro-hex-2-enopiranose (di-O-PivOOH). Estes compostos apresentaram resultados interessantes na literatura em oxidações enantiosseletiva de sulfetos orgânicos, em epoxidações de alcenos e em oxidações de Baeyer-Villiger. Inicialmente o potencial oxidativo de ambos hidroperóxidos, bem como a seletividade destes, foi avaliado frente a diversos ésteres borônicos, sendo que somente o TADOOH apresentou resultados promissores. (Ver esquema no PDF) Observou-se uma melhor seletividade do TADOOH frente a ésteres borônicos que possuíam grupos carbonílicos em sua estrutura. Ao submeter o β-boronil-éster, 3-fenil-3-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)propanoato de etila, à oxidação com o TADOOH em THF utilizando NaOH como base, a -30°C por 1 hora, obteve-se o respectivo álcool com 40% de e.e. Cálculos de DFT para o estado de transição na oxidação dos ésteres borônicos com o TADOOH foram realizados em colaboração com o grupo do Prof. Dr. Ataualpa Albert Carmo Braga. Estes cálculos demonstraram que o estado de transição é estabilizado por uma ligação de hidrogênio não clássica entre o oxigênio da carbonila e umas das ligações C-H dos grupos fenila do TADOOH. Além dos estudos relatados, a reconhecida metodologia de Sharpless na epoxidação assimétrica de alcoóis alílicos foi adaptada para a oxidação enantiosseletiva de ésteres borônicos. Ao trocar o ligante derivado de éster tártarico, normalmente utilizado nas epoxidações de Sharpless, por (-)-efedrina observou-se uma moderada seletividade deste sistema frente ao pinacol l-fenietilboronato. Investigações mais detalhadas demonstraram que a presença do Ti(IV) não era necessária, sendo que a (-)efedrina era a responsável pela ativação e indução quiral nesta reação. / In this work, it was investigated the potential use of chiral oxidants in organic boron compound oxidation. It is known in the literature, that organic boron compounds can be easily oxidized by hydroperoxides. However, an enantioselective approach in literature is scarce. In order to perform these reactions, hydroperoxide TADOOH ({(4R,5R)-5[(hydroperoxydiphenyl)methyl]-2,2-dimethyl-l,3-dioxolan-4-yl}diphenylmethanol) and carbohydrate derived hydroperoxide, 2,3-dideoxy-1-O-oxidanyl-4,6-di-O-pivaloyl-α-D-erythro-hex-2-enopyranose (di-O-PivOOH), have been synthesized. These compounds showed interesting results in several enantioselective oxidations, as like, organic sulfides oxidation, alkenes epoxidation and Baeyer-Villiger oxidations. The oxidative potential of both hydroperoxides, as well as their selectivity, were evaluated against several boronic esters. Only TADOOH has shown promissing results for further studies. (See Scheme on PDF). Boronic esters containing a carbonyl moiety showed better selectivities with TADOOH, for example, the reaction of β-boronyl-ester, ethyl 3-phenyl-3-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)propanoate, gave the correponding alcohol with 40% e.e. DFT calculations for the transition state in the oxidation of the boronic esters with TADOOH were carried out in collaboration with the group of Prof. Dr. Ataualpa Albert Carmo Braga. These calculations have shown that the transition state is stabilized by a non-classical hydrogen bond between the carbonyl oxygen and one of the C-H bonds of the TADOOH phenyl groups. In addition to the studies, the well-known Sharpless protocol for asymmetric epoxidation of allylic alcohols was adapted in the enantioselective oxidation of boronic esters. By replacing the tartaric ester-derived, commonly used in the Sharpless experiments, for (-)-ephedrine moderate selectivity was observed with pinacol 1-phenylethyl boronate. Further investigations showed that the presence of Ti (IV) was not necessary, and (-)-ephedrine was responsible for the activation and chiral induction in this reaction.
32

Development of imine reductases and reductive aminases for chiral amine synthesis

Aleku, Godwin January 2017 (has links)
Novel biocatalysts for the enantioselective reduction of imines and reductive amination of a broad range of carbonyl compounds have been developed. Unlike other imine reductases (IREDs), the IRED from Amycolaptosis orientalis (AoIRED) features an aprotic "catalytic" residue Asn171 and as such became an interesting candidate for detailed mechanistic, specificity and stereoselectivity studies. AoIRED has been shown to be an efficient catalyst for the enantioselective reduction of imines and iminium ions to yield the corresponding chiral amines in high conversions and good to excellent enantioselectivity. The enzyme exhibits unusual stereoselective properties, displaying a selectivity switch for structurally similar substrates and in certain cases for the same substrate depending on the age of the enzyme. Mutagenesis studies have highlighted important residues that may play key roles in the substrate specificity and stereoselectivity of the enzyme. The reductive aminase from Aspergillus oryzae (AspRedAm) is a multifunctional catalyst that efficiently catalyses i) the reductive coupling of carbonyl compounds and amine nucleophiles, ii) the enantioselective reduction of prochiral cyclic and preformed imines or iii) the oxidative deamination of amines towards kinetic resolution of racemic amines. Detailed kinetic studies have led to the construction of a kinetic model/mechanism and based on structure guided investigation of conserved active site residues, a putative catalytic mechanism has been proposed. It has also been possible to engineer wild-type AspRedAm for improved stereoselectivity as well as to invert the enzyme's enantioselectivity towards a range of substrates. Using AspRedAm as a catalyst, efficient systems have been developed that allow the kinetic resolution of several racemic amines. This thesis has been organised into separate chapters each addressing a specific theme. Chapter 1 gives an overview of recent advances in the field of amine biocatalysis with emphasis on biocatalytic imine reduction and reductive amination; it also outlines the objectives of this project. Chapter 2 describes methods and materials used in these studies while Chapters 3-7 present and discuss results from different projects that constitute the work in this thesis. Initial discovery and characterisation studies of IREDs are described in Chapter 3. Chapter 4 describes detailed characterisation of AoIRED with particular emphasis on stereoselectivity and synthetic applicability while Chapter 5 presents and discusses results from the study of the reductive aminase (AspRedAm) from Aspergillus oryzae. Chapters 6 and 7 respectively describe the engineering of AoIRED and AspRedAm, and the application of AspRedAm in kinetic resolution of racemic amines. The results from these chapters have been summarised and discussed in Chapter 8 and recommendations for future directions in this field have been offered.
33

Dédoublement cinétique d'amines par transfert d'acyle et approche synthétique du lyngbouilloside / Kinetic resolution of primary amines by acyl transfer and synthetic approach of lyngbouilloside

Krieger, Amandine 31 October 2014 (has links)
Le développement de méthodes efficaces de dédoublement cinétique d'amines représente, encore aujourd'hui, un défi en chimie organique. C'est dans ce contexte que nous avons montré que le (1S,2S)-N-acetyl-1,2-bis-trifluoromethanesulfonamidocyclohexane pouvait être utilisé comme réactif d'acylation hautement efficace pour le dédoublement cinétique d'amines propargyliques. En effet, ce réactif est capable de fournir les acétamides correspondants avec des ees pouvant atteindre jusqu'à 96% (τc = 50%)) lorsqu'un sel tel que l'AliquatTM 336 est utilisé alors qu'une inversion de la sélectivité est observée en absence de sel. Nous avons aussi été capable de réaliser le dédoublement cinétique d'amines allyliques (ees jusqu'à 88%, τc = 45%) en utilisant le même donneur d'acyle mais cette fois combiné à un sel d'ammonium supporté recyclable. Enfin, nous avons obtenu des résultats encourageant en développant une méthode catalytique impliquant une espèce chirale et un donneur d'acyle achiral. Une approche synthétique du lyngbouilloside a aussi été étudiée. De précédents travaux au sein de notre groupe ont montré qu'une erreur avait été commise lors de la détermination structurale du produit naturel suggérant une possible inversion du centre stéréogène en C11 qui ne serait donc pas de configuration (R) mais (S). C'est en tenant compte de cette hypothèse que nous avons développer une stratégie de synthèse convergente permettant d'accéder au lyngbouilloside avec le centre en C11 inversé avec l'idée de confirmer notre hypothèse et de réviser la structure initialement décrite. En résumé, la synthèse de l'aglycone du lyngbouilloside a été réalisée en 19 étapes et avec 2% de rendement global. / The development of a general and effective non-enzymatic acylative process for the kinetic resolution (KR) of amines remains, still today, a challenging field of research. In the course of this study, we were able to establish that (1S,2S)-N-acetyl-1,2-bis-trifluoromethanesulfonamidocyclohexane could be used as a highly selective acetylating agent for the kinetic resolution of primary propargylamines affording the corresponding acetamide with ees up to 96% (τc = 50%) when using an ammonium salt such as AliquatTM 336. Interestingly, a reversal of selectivity was observed in the absence of salt. We were also able to promote the kinetic resolution of primary allylamines with unprecedented levels of selectivity (ees up to 88%, τc = 45%) using a fully recyclable solid-supported ammonium salt instead of AliquatTM 336. In addition, we managed to obtain promising results in the development of a catalytic version using an achiral acyl donor in conjunction with a chiral catalyst. A synthetic approach of lyngbouilloside was also studied. Preliminary results in our group showed that the structure of the natural product may had been originally misassigned and suggested a stereochemical reassignment at C11. We managed to synthesize lyngbouilloside aglycone with the reversed stereogenic center at C11 in 19 steps and 2% overall yield.
34

The Utilization of Enzymes in the Synthesis and Modification of Natural and NonNatural Compounds: A Chemo-Enzymatic Approach to Enantiomerically Pure Compounds

Carr, Jason A 07 July 2004 (has links)
The employment of enzymes and whole cells has been important in many industries for centuries. However, it is only in the last 30 years that the use of enzymes for the synthesis of high-value fine chemicals has enjoyed increasing popularity. In fact, esterases and lipases are used almost routinely these days to provide optically active building blocks for the construction of imaginative new routes to chiral target molecules. The major topic of this work describes the utilization of enzymes (namely lipases) in the synthesis and modification of natural and non-natural compounds. Chapter 1 outlines the strengths and weaknesses of the most widely used enzyme systems and a description of a brief summary on the state of the art of biotransformations with special emphasis on the general applicability and reliability of various reaction types is described. Chapter 2 describes the enzymatic resolution of various 3-acetoxy-4-aryl-substituted azetidin-2-ones. Following screening of enzymes, such as Novozym-435, PS-30, PPL and AYS the best conditions were a phosphate buffer with PS-30 as the enzyme. The resulting products were the (3S, 4R)-3-hydroxy-4-aryl-substituted azetidin-2-ones and the unreacted (3R, 4S)-3-acetoxy-4-aryl-substituted azetidin-2-ones. Reactions generally occurred with high conversion and high selectivity. In Chapter 3, the regioselective transesterifications and hydrolysis of peracylated sophorolipid (SL) derivatives catalyzed by lipases was investigated. It was confirmed from the detailed spectral analysis of the products that transesterification failed to furnish any free hydroxyls on the sophorose ring. Instead, transesterification took place on the methyl ester located at the carboxylic end of the 17-hydroxyoctadecenoic acid chain attached to the C-1' position of the sophorose ring. In Chapter 4, the chemo-enzymatic syntheses of enantiomerically pure R and S imperanene from vanillin are described. The key step entails the asymmetrization of a prochiral diol using lipase PS-30. The resulting monoacetate has enantiomeric excesses of >97%. Biocatalysts represent a new class of chiral catalysts useful for a broad range of selective organic transformations. It is stating the obvious to say that biocatalysis is not a panacea for synthetic organic chemistry. However, advances over the past thirty years mean that it would be a serious mistake not to consider the employment of a biocatalyst, in, perhaps, the key step in a sequence of transformations that turn a cheap starting material into an expensive fine chemical.
35

Serine Hydrolase Selectivity : Kinetics and applications in organic and analytical chemistry

Hamberg, Anders January 2010 (has links)
The substrate selectivities for different serine hydrolases were utilized in various applications, presented in papers I-VI. The articles are discussed in the thesis in view of the kinetics of the enzyme catalysis involved. In paper I the enantioselectivities towards a range of secondary alcohols were reversed for Candida antarctica lipase B by site directed mutagenesis. The thermodynamic components of the enantioselectivity were determined for the mutated variant of the lipase. In papers II-III Candida antarctica lipase B was engineered for selective monoacylation using two different approaches. A variant of the lipase created for substrate assisted catalysis (paper II) and three different variants with mutations which decreased the volume of the active site (paper III) were evaluated. Enzyme kinetics for the different variants were measured and translated into activation energies for comparison of the approaches. In papers IV and V three different enzymes were used for rapid analysis of enantiomeric excess and conversion of O-acylated cyanohydrins synthesized by a defined protocol. Horse liver alcohol dehydrogenase, Candida antarctica lipase B and pig liver esterase were sequentially added to a solution containing the O-acylated cyanohydrin. Each enzyme caused a drop in absorbance from oxidation of NADH to NAD+. The product yield and enantiomeric excess was calculated from the relative differences in absorbance. In paper VI a method for C-terminal peptide sequencing was developed based on conventional Carboxypeptidase Y digestion combined with matrix assisted laser desorption/ionization mass spectrometry. An alternative nucleophile was used to obtain a stable peptide ladder and improve sequence coverage. / QC20100629
36

Enzymes as catalysts in synthesis of enantiomerically pure building blocks : secondary alcohols bearing two vicinal stereocenters

Liu, Rong January 2005 (has links)
Enzymes as tools in organic synthesis have provided enormous advantages. This thesis deals with the applications of enzymes in the kinetic resolutions of racemic compounds. The stereochemistry of chiral compounds and the kinetics of α/β hydrolase lipases are presented. From a practical point of view, the handling of a large number of parameters that influences the kinetic resolutions, especially enantioselectivity (E-value) are systematically described. A variety of approaches employed for raising the yields to over 50% are additionally discussed. Methods for the preparation of synthetically useful chiral building blocks were developed in this thesis. Thus, resolution of secondary alcohols bearing two vicinal stereocentres are studied. These building blocks can serve as starting materials for the synthesis of various enantiomerically pure compounds for agrochemistry, pharmaceuticals, chemical industry, and particularly for the total synthesis of pheromones. Racemic 3-substitued 2-hydroxybutane derivatives were produced in fairly high diastereomeric purities by a variety of chemical approaches, such as epimerization, metal-catalysed asymmetric addition etc. Kinetic resolution of these racemates was achieved by enzyme-catalysed reactions. Two lipases, Candida antarctica lipase B and Pseudomonas cepacia lipase were found to be useful in acylations as well as hydrolyses. In the biotransformations studied, the presence and nature of the second vicinal stereocentre in the chiral secondary alcohols investigated seemed to be important, e.g. in terms of the efficiencies of sequential kinetic resolutions, and altering the selectivities as well. / QC 20101020
37

Protein Engineering of Candida antarctica Lipase A : Enhancing Enzyme Properties by Evolutionary and Semi-Rational Methods

Sandström, Anders G. January 2010 (has links)
Enzymes are gaining increasing importance as catalysts for selective transformations in organic synthetic chemistry. The engineering and design of enzymes is a developing, growing research field that is employed in biocatalysis. In the present thesis, combinatorial protein engineering methods are applied for the development of Candida antarctica lipase A (CALA) variants with broader substrate scope and increased enantioselectivity. Initially, the structure of CALA was deduced by manual modelling and later the structure was established by X-ray crystallography. The elucidation of the structure of CALA revealed several biocatalytically interesting features. With the knowledge derived from the enzyme structure, enzyme variants were produced via iterative saturation mutagenesis (ISM), a powerful protein engineering approach. Several of these variants were highly active and enantioselective towards bulky esters. Furthermore, an extensively combinatorial protein engineering approach was developed and investigated. A CALA variant with a spacious substrate binding pocket that can accommodate an unusually bulky substrate, an ester derivate of the non-steroidal anti-inflammatory drug (S)-ibuprofen, was obtained with this approach. / At the time of the doctoral defence the following paper was unpublished and had a status as follows: Paper nr. 5: Manuscript
38

Part 1: Transition Metal Catalyzed Functionalization of Aromatic C-H Bonds / Part 2: New Methods in Enantioselective Synthesis

Schipper, Derek 25 July 2011 (has links)
Part 1: Transition-metal-catalyzed direct transformations of aromatic C-H bonds are emerging as valuable tools in organic synthesis. These reactions are attractive because of they allow for inherently efficient construction of organic building blocks by minimizing the pre-activation of substrates. Of these processes, direct arylation has recently received much attention due to the importance of the biaryl core in medicinal and materials chemistry. Also, alkyne hydroarylation has garnered interest because it allows for the atom-economical synthesis of functionalized alkenes directly from simple arenes and alkynes. Described in this thesis are number of advancements in these areas. First, palladium catalyzed direct arylation of azine N-oxides using synthetically important aryl triflates is described. Interesting reactivity of aryl triflates compared to aryl bromides was uncovered and exploited in the synthesis of a compound that exhibits antimalarial and antimicrobial activity. Also reported is the efficient, direct arylation enabled (formal) synthesis of six thiophene based organic electronic materials in high yields using simple starting materials. Additionally, the site-selective direct arylation of both sp2 and sp3 sites on azine N-oxide substrates is described. The arylation reactions are carried out in either a divergent manner or a sequential manner and is applied to the synthesis of the natural products, Papaverine and Crykonisine. Mechanistic investigations point towards the intimate involvement of the base in the mechanism of these reactions. Next, the rhodium(III)-catalyzed hydroarylation of internal alkynes is described. Good yields are obtained for a variety of alkynes and arenes with excellent regioselectivity for unsymmetrically substituted alkynes. Mechanistic investigations suggest that this reaction proceeds through arene metalation with the cationic rhodium catalyst, which enables challenging intermolecular reactivity. Part 2: Access to single enantiomer compounds is a fundamental goal in organic chemistry and despite remarkable advances in enantioselective synthesis, their preparation remains a challenge. Kinetic resolution of racemic products is an important method to access enantioenriched compounds, especially when alternative methods are scarce. Described in this thesis is the resolution of tertiary and secondary alcohols, which arise from ketone and aldehyde aldol additions. The method is technically simple, easily scalable, and provides tertiary and secondary alcohols in high enantiomeric ratios. A rationale for the unique reactivity/selectivity associated with (1S,2R)-N-methylephedrine in the resolution is proposed. Organocatalysis is a rapidly developing, powerful field for the construction of enantioenriched organic molecules. Described here is a complimentary class of organocatalysis using simple aldehydes as temporary tethers to perform challenging formally intermolecular reactions at room temperature. This strategy allows for the enantioselective, intermolecular cope-type hydroamination of allylic amines with hydroxyl amines. Also, interesting catalytic reactivity for dichloromethane is revealed.
39

Part 1: Transition Metal Catalyzed Functionalization of Aromatic C-H Bonds / Part 2: New Methods in Enantioselective Synthesis

Schipper, Derek 25 July 2011 (has links)
Part 1: Transition-metal-catalyzed direct transformations of aromatic C-H bonds are emerging as valuable tools in organic synthesis. These reactions are attractive because of they allow for inherently efficient construction of organic building blocks by minimizing the pre-activation of substrates. Of these processes, direct arylation has recently received much attention due to the importance of the biaryl core in medicinal and materials chemistry. Also, alkyne hydroarylation has garnered interest because it allows for the atom-economical synthesis of functionalized alkenes directly from simple arenes and alkynes. Described in this thesis are number of advancements in these areas. First, palladium catalyzed direct arylation of azine N-oxides using synthetically important aryl triflates is described. Interesting reactivity of aryl triflates compared to aryl bromides was uncovered and exploited in the synthesis of a compound that exhibits antimalarial and antimicrobial activity. Also reported is the efficient, direct arylation enabled (formal) synthesis of six thiophene based organic electronic materials in high yields using simple starting materials. Additionally, the site-selective direct arylation of both sp2 and sp3 sites on azine N-oxide substrates is described. The arylation reactions are carried out in either a divergent manner or a sequential manner and is applied to the synthesis of the natural products, Papaverine and Crykonisine. Mechanistic investigations point towards the intimate involvement of the base in the mechanism of these reactions. Next, the rhodium(III)-catalyzed hydroarylation of internal alkynes is described. Good yields are obtained for a variety of alkynes and arenes with excellent regioselectivity for unsymmetrically substituted alkynes. Mechanistic investigations suggest that this reaction proceeds through arene metalation with the cationic rhodium catalyst, which enables challenging intermolecular reactivity. Part 2: Access to single enantiomer compounds is a fundamental goal in organic chemistry and despite remarkable advances in enantioselective synthesis, their preparation remains a challenge. Kinetic resolution of racemic products is an important method to access enantioenriched compounds, especially when alternative methods are scarce. Described in this thesis is the resolution of tertiary and secondary alcohols, which arise from ketone and aldehyde aldol additions. The method is technically simple, easily scalable, and provides tertiary and secondary alcohols in high enantiomeric ratios. A rationale for the unique reactivity/selectivity associated with (1S,2R)-N-methylephedrine in the resolution is proposed. Organocatalysis is a rapidly developing, powerful field for the construction of enantioenriched organic molecules. Described here is a complimentary class of organocatalysis using simple aldehydes as temporary tethers to perform challenging formally intermolecular reactions at room temperature. This strategy allows for the enantioselective, intermolecular cope-type hydroamination of allylic amines with hydroxyl amines. Also, interesting catalytic reactivity for dichloromethane is revealed.
40

One-pot Synthesis Of Chloroalcohols And Their Lipase Mediated Kinetic Resolution - Ferrocenyl Aziridinylmethanols As Chiral Ligands In Enantioselective Conjugate Diethylzinc Addition To Enones

Isleyen, Alper 01 September 2007 (has links) (PDF)
An unexpected tricyclic ether formation instead of acetate addition to the double bond of a norbornene derivative aroused our interest to explore the mechanism of this reaction. Mechanistic studies showed that methylene diacetate (MDA) was formed in the stock solution (NBu4OAc + dichloromethane) and decomposed to formaldehyde under Lewis or Br&oslash / nsted acid conditions. Formaldehyde and olefin condensation (Prins reaction) clearly explains the formation of the unexpected product. Same methodology was then successfully applied to develop a one-step procedure for the synthesis of 3-chloro-3-arylpropanols, which are important starting materials for the synthesis of biologically active benzanilide derivatives. Styrenes were reacted with MDA in the presence of boron trifluoride to give the corresponding 3-chloro-3-arylpropanols in 36&amp / #8211 / 84% yield. The second part of the thesis involves kinetic resolution of 3-chloro-3-arylpropanols by lipase mediated acylation which are described for the first time. Acylation with the CCL provided the best enantioselectivity amongst the enzymes used. Enantiomerically enriched products with up to 78% ee were obtained after two successive lipase-mediated acylations. Different substituents on the aromatic ring and bromide, instead of chloride, at the benzylic position of the substrates were found to have no drastic influence on the enantioselectivity of the reaction. In the last part, easily available ferrocenyl substituted aziridinylmethanols (FAM) were complexed with nickel to catalyze the enantioselective diethylzinc addition to various enones with ee&amp / #8217 / s reaching 82%. The ligands can be recovered and used without losing their activity. The sense of asymmetric induction was found to be dependent on the configuration of the aziridine ring.

Page generated in 0.1093 seconds