Spelling suggestions: "subject:"cinetic theory off cases."" "subject:"cinetic theory off bases.""
81 |
Calcul des coefficients de transport dans des plasmas hors de l'équilibre / Calculation of transport coefficients in plasmas out of equilibriumMahfouf, Ali 18 July 2016 (has links)
Les propriétés de transport à haute température dans les gaz et/ou dans les plasmas ont une importance capitale dans différents domaines, à savoir dans le domaine de technologie de coupure à arc, plasmas de coupure, de soudure ou de gravure. La connaissance des coefficients de transport est nécessaire pour toute modélisation faisant intervenir les équations hydrodynamiques. Dans le cadre de la théorie cinétique des gaz dilués, une solution approchée de l’équation intégro-différentielle de Boltzmann régissant les fonctions de distribution a été proposée par Chapman-Enskog. Les coefficients de transport sont calculés classiquement par la méthode de Chapman-Enskog via les intégrales de collision. Dans le cadre de notre étude nous avons développé, dans un premier temps, un code numérique permettant l’obtention de ces intégrales de collision en tenant compte des singularités qui peuvent apparaître dans le calcul des sections efficaces relatives aux interactions entre les particules constituant les gaz et/ou les plasmas. Dans un second temps nous avons étudié l’influence du choix des paramètres des potentiels d’interaction sur les coefficients de transport. Par la suite, nous avons utilisé le code numérique ainsi développé pour évaluer les coefficients de transport du plasma d’hélium en étudiant l’influence du choix de la méthode de calcul de composition chimique sur ces coefficients. Enfin, un modèle simplifié d’une interaction entre une onde électromagnétique et un plasma d’hélium a été proposé comme une application directe des coefficients de transport. / Transport properties at high temperature in gases and/or in plasmas are of very importance in various fields, namely in the field of breaking technology in arc, cutting plasma, welding or burning. Knowledge of transport coefficients is necessary for any modeling involving hydrodynamic equations. As part of the kinetic theory of diluted gas, an approximate solution of the integro-differential Boltzmann equation governing distribution functions was proposed by Chapman-Enskog. Transport coefficients are classically computed using the method of Chapman-Enskog through the collision integrals. In our study we have developed, initially, a numerical code to obtain these collision integral taking into account the singularities that may occur in the calculation of the cross sections relating to interactions between particles forming the gas and/or plasmas. Secondly, we have studied the influence of the choice of parameters of interaction potentials on transport coefficients. Subsequently, we have used the numerical code developed for evaluating and helium plasma transport coefficients by studying the influence of the choice of method for calculating chemical composition on these coefficients. Finally, a simplified model of an interaction between an electromagnetic wave and a helium plasma has been proposed as a direct application of the transport coefficients.
|
82 |
Macroscopic description of rarefied gas flows in the transition regimeTaheri Bonab, Peyman 01 September 2010 (has links)
The fast-paced growth in microelectromechanical systems (MEMS), microfluidic fabrication, porous media applications, biomedical assemblies, space propulsion, and vacuum technology demands accurate and practical transport equations for rarefied gas flows. It is well-known that in rarefied situations, due to strong deviations from the continuum regime, traditional fluid models such as Navier-Stokes-Fourier (NSF) fail. The shortcoming of continuum models is rooted in nonequilibrium behavior of gas particles in miniaturized and/or low-pressure devices, where the Knudsen number (Kn) is sufficiently large.
Since kinetic solutions are computationally very expensive, there has been a great desire to develop macroscopic transport equations for dilute gas flows, and as a result, several sets of extended equations are proposed for gas flow in nonequilibrium states. However, applications of many of these extended equations are limited due to their instabilities and/or the absence of suitable boundary conditions.
In this work, we concentrate on regularized 13-moment (R13) equations, which are a set of macroscopic transport equations for flows in the transition regime, i.e., Kn≤1. The R13 system provides a stable set of equations in Super-Burnett order, with a great potential to be a powerful CFD tool for rarefied flow simulations at moderate Knudsen numbers.
The goal of this research is to implement the R13 equations for problems of practical interest in arbitrary geometries. This is done by transformation of the R13 equations and boundary conditions into general curvilinear coordinate systems. Next steps include adaptation of the transformed equations in order to solve some of the popular test cases, i.e., shear-driven, force-driven, and temperature-driven flows in both planar and curved flow passages. It is shown that inexpensive analytical solutions of the R13 equations for the considered problems are comparable to expensive numerical solutions of the Boltzmann equation. The new results present a wide range of linear and nonlinear rarefaction effects which alter the classical flow patterns both in the bulk and near boundary regions. Among these, multiple Knudsen boundary layers (mechanocaloric heat flows) and their influence on mass and energy transfer must be highlighted. Furthermore, the phenomenon of temperature dip and Knudsen paradox in Poiseuille flow; Onsager's reciprocity relation, two-way flow pattern, and thermomolecular pressure difference in simultaneous Poiseuille and transpiration flows are described theoretically. Through comparisons it is shown that for Knudsen numbers up to 0.5 the compact R13 solutions exhibit a good agreement with expensive solutions of the Boltzmann equation.
|
Page generated in 0.1526 seconds