• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • Tagged with
  • 10
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La thermalisation des électrons dans une atmosphère stellaire

Chevallier, Loïc 29 September 2000 (has links) (PDF)
Cette thèse présente une étude théorique d'un modèle d'atmosphère stellaire, modélisée comme une couche plan-parallèle irradiée sur une face, avec des électrons non thermalisés a priori. Les électrons sont caractérisés par leur fonction de distribution des vitesses (fdv), que l'on cherche à calculer en même temps que les autres grandeurs de l'atmosphère. Notre principal objectif est de comprendre le mécanisme de thermalisation des électrons, qui tend à rapprocher leur fdv de la fonction de Maxwell-Boltzmann lorsque les collisions élastiques dominent les interactions inélastiques des électrons avec le milieu ambiant, une hypothèse universellement admise en théorie des atmosphères stellaires. Les processus inélastiques (collisionnels ou radiatifs) perturbent cet équilibre, et la fdv des électrons peut s'écarter considérablement de l'équilibre maxwellien aux hautes énergies. De tels écarts modifient fortement les populations atomiques et le champ radiatif. Les calculs numériques consistent en la comparaison de trois modèles d'atmosphères: en équilibre thermodynamique local (ETL), hors ETL avec électrons thermalisés, et hors ETL avec électrons non thermalisés a priori. Nous avons résolu ce problème dans un plasma d'hydrogène pur en prenant en compte les principaux types d'interaction présents dans les atmosphères stellaires. L'équation cinétique des électrons a été résolue en calculant son terme de collision élastique à l'aide d'un modèle BGK longuement justifié dans la thèse. Notre principale contribution se situe au niveau du transfert de rayonnement. Nous avons utilisé, et surtout développé, les codes de l'équipe "Transfert" de l'Observatoire de Lyon. Les calculs montrent que la fdv des électrons s'écarte considérablement d'une maxwellienne dans la région hors ETL de l'atmosphère stellaire. Pour conclure, nous envisageons quelques extensions possibles de ce travail et certaines applications astrophysiques.
2

Multi-Scale models and computational methods for aerothermodynamics / Modèles muti échelles et méthodes de calcul pour l'aérothermodynamique

Munafo, Alessandro 21 January 2014 (has links)
Cette thèse porte sur le développement de modèles multi-échelles et de méthodes de calcul pour les applications aérothermodynamiques. Le travail de recherche sur les modèles multi-échelles met l’accent sur l’excitation énergétique et la dissociation. L’objectif était double : mieux comprendre la dynamique des processus d'excitation énergétique et dissociation et développer des modèles réduits en diminuant la résolution d’un modèle détaillé de collisions rovibrationnelles. Les résultats obtenus ont montré que les modèles réduits permettent de reproduire avec précision la dynamique d’écoulement prédites par le modèle détaillé de collisions rovibrationnelles. Le travail de recherche sur les méthodes de calcul a porté sur les écoulements raréfiés. L’objectif était de formuler une méthode numérique de type déterministe pour résoudre l’équation de Boltzmann dans le cas de gaz à plusieurs composants y compris l’énergie interne. La méthode numérique est basée sur la structure de convolution pondérée de la transformée de Fourier de l’équation de Boltzmann. La précision de la méthode numérique proposée a été évaluée en comparant les moments extraits de la fonction de distribution de vitesse avec les prédictions de la méthode de simulation directe Monte Carlo (DSMC). Dans toutes les applications étudiées, un excellent accord a été trouvé. / This thesis aimed at developing multi-scale models and computational methods for aerother-modynamics applications. The research on multi-scale models has focused on internal energy excitation and dissociation of molecular gases in atmospheric entry flows. The scope was two-fold: to gain insight into the dynamics of internal energy excitation and dissociation in the hydrodynamic regime and to develop reduced models for Computational Fluid Dynamics applications. The reduced models have been constructed by coarsening the resolution of a detailed rovibrational collisional model developed based on ab-initio data for the N2 (1Σ+g)-N (4Su) system provided by the Computational Quantum Chemistry Group at NASA Ames Research Center. Different mechanism reduction techniques have been proposed. Their appli-cation led to the formulation of conventional macroscopic multi-temperature models and vi-brational collisional models, and innovative energy bin models. The accuracy of the reduced models has been assessed by means of a systematic comparison with the predictions of the detailed rovibrational collisional model. Applications considered are inviscid flows behind normal shock waves, within converging-diverging nozzles and around axisymmetric bodies, and viscous flows along the stagnation-line of blunt bodies. The detailed rovibrational colli-sional model and the reduced models have been coupled to two flow solvers developed from scratch in FORTRAN 90 programming language (SHOCKING_F90 and SOLV-ER_FVMCC_F90). The results obtained have shown that the innovative energy bin models are able to reproduce the flow dynamics predicted by the detailed rovibrational collisional model with a noticeable benefit in terms of computing time. The energy bin models are also more accurate than the conventional multi-temperature and vibrational collisional models. The research on computational methods has focused on rarefied flows. The scope was to formu-late a deterministic numerical method for solving the Boltzmann equation in the case of multi-component gases with internal energy by accounting for both elastic and inelastic collisions. The numerical method, based on the weighted convolution structure of the Fourier trans-formed Boltzmann equation, is an extension of an existing spectral-Lagrangian method, valid for a mono-component gas without internal energy. During the development of the method, particular attention has been devoted to ensure the conservation of mass, momentum and en-ergy while evaluating the collision operators. Conservation is enforced through the solution of constrained optimization problems, formulated in a consistent manner with the collisional in-variants. The extended spectral-Lagrangian method has been implemented in a parallel com-putational tool (best; Boltzmann Equation Spectral Solver) written in C programming lan-guage. Applications considered are the time-evolution of an isochoric gaseous system initially set in a non-equilibrium state and the steady flow across a normal shock wave. The accuracy of the proposed numerical method has been assessed by comparing the moments extracted from the velocity distribution function with Direct Simulation Monte Carlo (DSMC) method predictions. In all the cases, an excellent agreement has been found. The computational results obtained for both space homogeneous and space inhomogeneous problems have also shown that the enforcement of conservation is mandatory for obtaining accurate numerical solutions.
3

Quelques contributions à l'analyse mathématique et numérique d'équations cinétiques collisionnelles / Some contributions to the mathematical and numerical analysis of collisional kinetic equations

Rey, Thomas 21 September 2012 (has links)
Cette thèse est dédiée à l'étude mathématique et numérique d'une classe d'équations cinétiques collisionnelles, de type équation de Boltzmann. Nous avons porté un intérêt tout particulier à l'équation des milieux (ou gaz) granulaires, initialement introduite dans la littérature physique pour décrire le comportement hors équilibre de matériaux composés d'un grand nombre de grains, ou particules, non nécessairement microscopiques, et interagissant par des collisions dissipant l'énergie cinétique. Ces modèles se sont révélés avoir une structure mathématique très riche. Cette thèse se structure en trois partie pouvant être lues de manière indépendante, mais néanmoins en rapport avec des équations cinétiques collisionnelles en général, et l'équation des milieux granulaires en particulier. La première partie est dédiée à l'étude mathématique du comportement asymptotique de certaines équations cinétiques collisionnelles dans un cadre homogène en espace. Nous y montrons des résultats de type explosion et convergence vers la solution autosimilaire avec calcul explicite des taux, pour des opérateurs de type Boltzmann, grâce à l'utilisation (entre autre) d'une nouvelle méthode de changement de variables dépendant directement de la solution de l'équation considérée. En particulier, nous démontrons que pour un modèle de gaz granulaire - dit anormal - il est possible d'observer une explosion en temps fini. Dans la deuxième partie, orientée analyse numérique et calcul scientifique, nous nous intéressons développement et à l'étude de méthodes spectrales pour la résolution de problèmes multi-échelles, issus de la théorie des équations cinétiques collisionnelles. Les méthodes de changement de variables tiennent aussi une place importante dans cette partie, et permettent d'observer numériquement des phénomènes non triviaux qui apparaissent lors de l'étude de gaz granulaires, comme la création d'amas de matière ou la caractérisation précise du retour vers l'équilibre. La troisième et dernière partie est dédiée à l'étude spectrale de l'opérateur des milieux granulaires avec bain thermique, linéarisé au voisinage d'un équilibre homogène en espace, afin d'établir des résultats de type stabilité et convergence vers une limite hydrodynamique. Ce travail est en fait la généralisation d'un résultat célèbre dans la théorie de l'équation de Boltzmann, dû à R. Ellis et M. Pinsky, et établissant rigoureusement la première limite hydrodynamique vers les équations d'Euler compressibles linéaires puis Navier-Stokes de cette équation / This dissertation is dedicated to the mathematical and numerical study of a class of collisional kinetic equations, such as the Boltzmann equation of perfect gases. We took a particular interest in the granular media (or gases) equation, which has been first introduced in the physical literature to describe the nonnequilibrium behavior of materials composed of a large number of grains (the particles) of macroscopic size, interacting through energy dissipative collisions. These models have a very rich mathematical structure. This dissertation is divided in three independent part, all related to the theory of collisional kinetic equation, with a strong emphasis on granular media. The first part concerns the mathematical study of the asymptotic behavior of space homogeneous Boltzmann-like kinetic equations. We prove some blow up results, as well as convergence towards self-similarity, with explicit rates for two different models. One of the key tools of our proofs is the use of a new scaling method, where the scaling function depends on the solution itself. We especially prove that for a particular model of granular gases (also know as anomalous), finite time blow up occurs. The second part is dedicated to the development and study of spectral methods for the resolution of multi-scale problems, coming from the theory of collisional kinetic equations. Some rescaling methods take a very important place in this part, allowing to observe numerically some nontrivial phenomena such as the clustering in space which occurs in the time evolution of a space inhomogeneous granular gas, or to investigate numerically the trend to equilibrium for this equation. The whole third (and last) part is dedicated to the spectral study of the granular gases operator with a thermal bath, linearized near a space homogeneous self-similar profile. The goal of this work is to prove some stability results for the complete space inhomogeneous equation, and to investigate the hydrodynamic limit of the model. This work is based and extend the famous result of R. Ellis and M. Pinsky on the spectrum of the linearized Boltzmann equation, intended to establish rigorously the hydrodynamic limit of this equation towards the linearized Euler and Navier-Stokes equations
4

Conditions aux limites dans un gaz raréfié: loi de réflexion à la paroi, saut de température, vitesse de glissement, couche de Knudsen

Dadzie, S. Kokou 14 December 2005 (has links) (PDF)
Cette thèse aborde le problème de l'interaction gaz/paroi et des conditions aux limites en écoulement de gaz raréfié. Les écoulements dans les microsystèmes et les écoulements autour des engins spatiaux en rentrée atmosphérique ont démontré l'insuffisance des concepts utilisés dans la formulation des conditions aux limites hydrodynamiques existantes. Dans ce travail, nous avons élaboré, dans un premier temps, des modèles<br />de conditions aux limites cinétiques, en développant de manière originale la théorie de " scattering kernel " bien connue dans le domaine de la recherche de conditions aux limites pour l'équation de Boltzmann. Ces modèles sont développés d'une part pour un gaz monoatomique et d'autre part pour un gaz de molécules complexes. Les démonstrations font appel à des formulations intégrales et à une description basée sur la théorie des opérateurs. Elles introduisent la notion de coefficient d'accommodation<br />propre à chaque degré de liberté. Dans un deuxième temps nous avons utilisé ces conditions aux limites<br />cinétiques pour établir des conditions aux limites hydrodynamiques : saut de température<br />- glissement de vitesse. Nous abordons également le problème de la couche limite cinétique (couche de Knudsen) et de la prédiction du flux de chaleur à la paroi. Finalement ces conditions aux limites sont utilisées pour les calculs de coefficients aérodynamiques et de quelques types d'écoulements particuliers. Les résultats sont comparés à ceux donnés par d'autres modèles, ainsi qu'aux résultats expérimentaux.
5

Mathematical modelling and analysis of polyatomic gases and mixtures in the context of kinetic theory of gases and fluid mechanics / Modélisation et analyse mathématique de gaz polyatomiques et de mélanges dans le contexte de la théorie cinétique des gaz et de la mécanique des fluides

Pavić, Milana 25 September 2014 (has links)
En ce qui concerne les gaz polyatomiques, nous proposons deux hiérarchies distinctes formées d'équations de moments, qui permettent d'obtenir des lois de conservation de la densité de masse, de la quantité de mouvement et de l'énergie totale du gaz. Ces hiérarchies sont généralement coupées à un certain ordre. Une méthode qui fournit une solution appropriée au problème de fermeture est la méthode de la maximisation d'entropie. Nous formulons un problème variationnel et nous explorons en détail le cas physique de 14 moments. On étudie un mélange de gaz polyatomiques dans lequel la fonction de distribution de chaque espèce converge vers une Maxwellienne, chacune avec sa propre vitesse moyenne et température. Les lois pour la densité de masse, de quantité de mouvement et d'énergie peuvent être obtenues. En particulier, les coefficients phénoménologiques de la thermodynamique étendue peuvent être déterminés à partir des termes sources. On présente pour les mélanges de gaz monoatomiques l'asymptotique diffusive des équations de Boltzmann. Le développement de Hilbert de chaque fonction de distribution donne deux équations. La première équation permet d'affirmer que le mélange est proche de l'équilibre. La deuxième équation est une équation fonctionnelle linéaire en la variable de vitesse. Nous prouvons l'existence d'une solution de cette équation. D'une part, lorsque les masses moléculaires sont égales, les techniques introduites par Grad peuvent être utilisés. D'autre part, nous proposons une nouvelle approche qui est valable lorsque les masses moléculaires sont différentes. / Considering polyatomic gases, we first propose two independent hierarchies of the moment equations, which allow to obtain conservation laws for mass density, momentum and total energy of a gas. Such hierarchies are usually truncated at some order. A method which provides an appropriate solution to the closure problem is the maximization of entropy method. We formulate a variational problem and explore in detail the physical case of 14 moments. We study mixtures of polyatomic gases in which the distribution function of each species converges towards a Maxwellian distribution function, each with its own bulk velocity and temperature. Balance laws for mass density, momentum and energy can be obtained. In particular, the phenomenological coefficients of extended thermodynamics can be determined from the source terms. Regarding mixtures of monatomic gases, we discuss the diffusion asymptotics of the Boltzmann equations. The Hilbert expansion yields two equations. The first equation allows to state that the mixture is close to equilibrium. The second equation is a linear functional equation in the velocity variable. We prove the existence of a solution to this equation. On the one hand, when molecular masses are equal, the techniques introduced by Grad can be used. On the other hand, we propose a new approach, which only holds when molecular masses are different.
6

Méthode de Monte-Carlo et non-linéarités : de la physique du transfert radiatif à la cinétique des gaz / Monte-Carlo method and non-linearities : from radiative transfer physics to gas kinetics

Terrée, Guillaume 13 October 2015 (has links)
En physique du transport, en particulier en physique du transfert radiatif, la méthode de Monte-Carlo a été développée à l'origine comme la simulation de l'histoire d'un grand nombre de particules, dont on déduit des observables moyennes. Cette méthode numérique doit son succès à plusieurs qualités : une gestion naturelle des espaces des phases aux nombreuses dimensions, une erreur systématique nulle par rapport au modèle physico-mathématique, les intervalles de confiance donnés avec les résultats, une capacité à prendre en compte simultanément de nombreux phénomènes physiques, la possibilité de calcul de sensibilités simultané, et une parallélisation aisée. En cinétique des gaz, les particules collisionnent entre elles et non pas avec un milieu extérieur ; on dit que leur transport est non-linéaire. Ces collisions mutuelles mettent en défaut l'approche évoquée ci-dessus de la méthode de Monte-Carlo ; car pour simuler des trajectoires indépendantes de multiples particules et ainsi estimer leur distribution, il faut connaître au préalable exactement cette même distribution...Cette thèse fait suite à celles de Jérémi DAUCHET (2012) et de Mathieu GALTIER (2014), consacrées au transfert radiatif. Entre autres travaux, ces auteurs montraient comment la méthode de Monte-Carlo peut s'accommoder de non-linéarités, en gardant son formalisme et ses spécificités habituelles. Les non-linéarités alors franchies étaient respectivement une loi de couplage chimie/luminance, et la dépendance de la luminance envers le coefficient d'absorption. On essaie dans ce manuscrit d'outrepasser la non-linéarité du transport. Pour cela, nos principaux outils sont un suivi des particules en remontant le temps, basé sur des formulations intégrales des équations de transport, formulations largement inspirées des algorithmes dits à collisions nulles. Nous montrons, sur plusieurs exemples académiques, que nous avons en effet étendu la méthode de Monte-Carlo à la résolution de l'équation de Boltzmann. Ces exemples sont aussi l'occasion de tester les limites de ce que nous avons mis en place. Les résultats les plus marquants sont certainement l'absence totale de maillage dans la méthode numérique, ainsi que sa capacité à calculer correctement les quantités de particules de haute énergie cinétique (toujours peu nombreuses par rapport au total, en cinétique des gaz). Au-delà des exemples fournis, ce manuscrit est voulu comme un essai de formalisme et une exploration des bases de la méthode développée. L'accent est mis sur les raisonnements menant à la mise au point de la méthode, plutôt que sur les implémentations particulières qui ont été abouties. La méthode est encore, aux yeux de l'auteur, largement susceptible d'être retravaillée. En particulier, les temps maximaux sur lesquels l'évolution des particules est calculable, qui constituent la faiblesse principale de la méthode numérique développée, peuvent sûrement être augmentés. / In transport physics, especially in radiative transfer physics, the Monte-Carlo method has been originally developed as the simulation of the history of numerous particles, from which are deduced mean observables. This numerical method owes its success to several qualities : a natural management of many-dimensional phase space, a null systematic error away from the mathematical and physical model, the confidence intervals given with the results, an ability to take into account simultaneously numerous physical phenomenons, the simultaneous sensitivities calculating possibility, and an easy parallelization. In gas kinetics, particles collide each other, not with an external fixed medium ; it is said that their transport is non-linear. These mutual collisions put out of action the aforesaid approach of the Monte-Carlo method ; because in order to simulate the independent trajectories of multiple particles and thus estimate their distribution, this distribution must beforehand be exactly known...This thesis follows on from those of Jérémy DAUCHET (2012) and of Mathieu GALTIER (2014), dedicated to radiative transfer physics. Between other works, these authors have shown how the Monte-Carlo method can bear non-linearities, while keeping its customary formalism and specificities. The then overcome non-linearities were respectively a chemistry/irradiance coupling law, and the dependence of the irradiance toward the absorption coefficient. We try in this manuscript to overcome the non-linearity of the transport. In this aim, our main tools are a reverse following of particles, based on integral formulations of the transport equations, formulations largely inspired from the so-called null collisions algorithms. We show, on several academic examples, that we have indeed extended the Monte Carlo method to the resolution of the Boltzmann equation. These examples are also occasions to test the limits of what we have built. The most noteworthy results are certainly the absence of any mesh in the numerical method, and its capacity to calculate correctly the high-speed particles quantities (always rare compared to the total, in gas kinetics). Beyond the given examples, this manuscript is wanted as a formalism attempt and an exploration of the developed method basics. The focus is made on the reasoning leading to the method, rather than on particular implementations which have been realized. In the eyes of the author, the method is still largely reworkable. In particular, the maximal times on which the evolution of particles is computable, which constitute the main weakness of the developed numerical method, can surely be increased.
7

Etude des écoulements gazeux isothermes en microconduit : du régime hydrodynamique au proche régime moléculaire libre

Ewart, Timothée 07 September 2007 (has links) (PDF)
Ce travail de thèse porte sur l'étude expérimentale, numérique et théorique des écoulements isothermes dans les microtubes et les microcanaux pour différents gaz. Le volet proprement expérimental porte sur la mesure des débits. Ce volet est complété d'abord par la mise en oeuvre d'une méthode de Monte Carlo permettant d'atteindre le profil des vitesses dans des sections choisies. Ces résultats sont comparés a ceux donnés par différentes approches théoriques et numériques : approche NS continue en régime de glissement, approches cinétiques (Boltzmann linéarisé, BGK) en régime transitionnel ou en régime moléculaire libre. A travers ces comparaisons on détermine notamment le domaine de validité du régime de glissement (premier et second ordre), des valeurs du coefficient d'accommodation de la composante tangentielle de la quantité de mouvement, les valeurs du coefficient du second ordre en régime de glissement ainsi que les grandeurs dont il dépend. On analyse aussi le comportement asymptotique de l'écoulement (débit) quand le nombre de Knudsen devient très grand.
8

Quelques contributions à l'analyse mathématique et numérique d'équations cinétiques collisionnelles

Rey, Thomas 21 September 2012 (has links) (PDF)
Cette thèse est dédiée à l'étude mathématique et numérique d'une classe d'équations cinétiques collisionnelles, de type équation de Boltzmann. Nous avons porté un intérêt tout particulier à l'équation des milieux (ou gaz) granulaires, initialement introduite dans la littérature physique pour décrire le comportement hors équilibre de matériaux composés d'un grand nombre de grains, ou particules, non nécessairement microscopiques, et interagissant par des collisions dissipant l'énergie cinétique. Ces modèles se sont révélés avoir une structure mathématique très riche. Cette thèse se structure en trois partie pouvant être lues de manière indépendante, mais néanmoins en rapport avec des équations cinétiques collisionnelles en général, et l'équation des milieux granulaires en particulier. La première partie est dédiée à l'étude mathématique du comportement asymptotique de certaines équations cinétiques collisionnelles dans un cadre homogène en espace. Nous y montrons des résultats de type explosion et convergence vers la solution autosimilaire avec calcul explicite des taux, pour des opérateurs de type Boltzmann, grâce à l'utilisation (entre autre) d'une nouvelle méthode de changement de variables dépendant directement de la solution de l'équation considérée. En particulier, nous démontrons que pour un modèle de gaz granulaire - dit anormal - il est possible d'observer une explosion en temps fini. Dans la deuxième partie, orientée analyse numérique et calcul scientifique, nous nous intéressons développement et à l'étude de méthodes spectrales pour la résolution de problèmes multi-échelles, issus de la théorie des équations cinétiques collisionnelles. Les méthodes de changement de variables tiennent aussi une place importante dans cette partie, et permettent d'observer numériquement des phénomènes non triviaux qui apparaissent lors de l'étude de gaz granulaires, comme la création d'amas de matière ou la caractérisation précise du retour vers l'équilibre. La troisième et dernière partie est dédiée à l'étude spectrale de l'opérateur des milieux granulaires avec bain thermique, linéarisé au voisinage d'un équilibre homogène en espace, afin d'établir des résultats de type stabilité et convergence vers une limite hydrodynamique. Ce travail est en fait la généralisation d'un résultat célèbre dans la théorie de l'équation de Boltzmann, dû à R. Ellis et M. Pinsky, et établissant rigoureusement la première limite hydrodynamique vers les équations d'Euler compressibles linéaires puis Navier-Stokes de cette équation.
9

Calcul des coefficients de transport dans des plasmas hors de l'équilibre / Calculation of transport coefficients in plasmas out of equilibrium

Mahfouf, Ali 18 July 2016 (has links)
Les propriétés de transport à haute température dans les gaz et/ou dans les plasmas ont une importance capitale dans différents domaines, à savoir dans le domaine de technologie de coupure à arc, plasmas de coupure, de soudure ou de gravure. La connaissance des coefficients de transport est nécessaire pour toute modélisation faisant intervenir les équations hydrodynamiques. Dans le cadre de la théorie cinétique des gaz dilués, une solution approchée de l’équation intégro-différentielle de Boltzmann régissant les fonctions de distribution a été proposée par Chapman-Enskog. Les coefficients de transport sont calculés classiquement par la méthode de Chapman-Enskog via les intégrales de collision. Dans le cadre de notre étude nous avons développé, dans un premier temps, un code numérique permettant l’obtention de ces intégrales de collision en tenant compte des singularités qui peuvent apparaître dans le calcul des sections efficaces relatives aux interactions entre les particules constituant les gaz et/ou les plasmas. Dans un second temps nous avons étudié l’influence du choix des paramètres des potentiels d’interaction sur les coefficients de transport. Par la suite, nous avons utilisé le code numérique ainsi développé pour évaluer les coefficients de transport du plasma d’hélium en étudiant l’influence du choix de la méthode de calcul de composition chimique sur ces coefficients. Enfin, un modèle simplifié d’une interaction entre une onde électromagnétique et un plasma d’hélium a été proposé comme une application directe des coefficients de transport. / Transport properties at high temperature in gases and/or in plasmas are of very importance in various fields, namely in the field of breaking technology in arc, cutting plasma, welding or burning. Knowledge of transport coefficients is necessary for any modeling involving hydrodynamic equations. As part of the kinetic theory of diluted gas, an approximate solution of the integro-differential Boltzmann equation governing distribution functions was proposed by Chapman-Enskog. Transport coefficients are classically computed using the method of Chapman-Enskog through the collision integrals. In our study we have developed, initially, a numerical code to obtain these collision integral taking into account the singularities that may occur in the calculation of the cross sections relating to interactions between particles forming the gas and/or plasmas. Secondly, we have studied the influence of the choice of parameters of interaction potentials on transport coefficients. Subsequently, we have used the numerical code developed for evaluating and helium plasma transport coefficients by studying the influence of the choice of method for calculating chemical composition on these coefficients. Finally, a simplified model of an interaction between an electromagnetic wave and a helium plasma has been proposed as a direct application of the transport coefficients.
10

Influence du stochastique sur des problématiques de changements d'échelle / Stochastic influence on problematics around changes of scale

Ayi, Nathalie 19 September 2016 (has links)
Les travaux de cette thèse s'inscrivent dans le domaine des équations aux dérivées partielles et sont liés à la problématique des changements d'échelle dans le contexte de la cinétique des gaz. En effet, sachant qu'il existe plusieurs niveaux de description pour un gaz, on cherche à relier les différentes échelles associées dans un cadre où une part d'aléa intervient. Dans une première partie, on établit la dérivation rigoureuse de l'équation de Boltzmann linéaire sans cut-off en partant d'un système de particules interagissant via un potentiel à portée infinie en partant d'un équilibre perturbé.La deuxième partie traite du passage d'un modèle BGK stochastique avec champ fort à une loi de conservation scalaire avec forçage stochastique. D'abord, on établit l'existence d'une solution au modèle BGK considéré. Sous une hypothèse additionnelle, on prouve alors la convergence vers une formulation cinétique associée à la loi de conservation avec forçage stochastique.Au cours de la troisième partie, on quantifie dans le cas à vitesses discrètes le défaut de régularité dans les lemmes de moyenne et on établit un lemme de moyenne stochastique dans ce même cas. On applique alors le résultat au cadre de l'approximation de Rosseland pour établir la limite diffusive associée à ce modèle.Enfin, on s'intéresse à l'étude numérique du modèle de Uchiyama de particules carrées à quatre vitesses en dimension deux. Après avoir adapté les méthodes de simulation développées dans le cas des sphères dures, on effectue une étude statistique des limites à différentes échelles de ce modèle. On rejette alors l'hypothèse d'un mouvement Brownien fractionnaire comme limite diffusive / The work of this thesis belongs to the field of partial differential equations and is linked to the problematic of scale changes in the context of kinetic of gas. Indeed, knowing that there exists different scales of description for a gas, we want to link these different associated scales in a context where some randomness acts, in initial data and/or distributed on all the time interval. In a first part, we establish the rigorous derivation of the linear Boltzmann equation without cut-off starting from a particle system interacting via a potential of infinite range starting from a perturbed equilibrium. The second part deals with the passage from a stochastic BGK model with high-field scaling to a scalar conservation law with stochastic forcing. First, we establish the existence of a solution to the considered BGK model. Under an additional assumption, we prove then the convergence to a kinetic formulation associated to the conservation law with stochastic forcing. In the third part, first we quantify in the case of discrete velocities the defect of regularity in the averaging lemmas. Then, we establish a stochastic averaging lemma in that same case. We apply then the result to the context of Rosseland approximation to establish the diffusive limit associated to this model.Finally, we are interested into the numerical study of Uchiyama's model of square particles with four velocities in dimension two. After adapting the methods of simulation which were developed in the case of hard spheres, we carry out a statistical study of the limits at different scales of this model. We reject the hypothesis of a fractional Brownian motion as diffusive limit

Page generated in 0.1053 seconds