• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La thermalisation des électrons dans une atmosphère stellaire

Chevallier, Loïc 29 September 2000 (has links) (PDF)
Cette thèse présente une étude théorique d'un modèle d'atmosphère stellaire, modélisée comme une couche plan-parallèle irradiée sur une face, avec des électrons non thermalisés a priori. Les électrons sont caractérisés par leur fonction de distribution des vitesses (fdv), que l'on cherche à calculer en même temps que les autres grandeurs de l'atmosphère. Notre principal objectif est de comprendre le mécanisme de thermalisation des électrons, qui tend à rapprocher leur fdv de la fonction de Maxwell-Boltzmann lorsque les collisions élastiques dominent les interactions inélastiques des électrons avec le milieu ambiant, une hypothèse universellement admise en théorie des atmosphères stellaires. Les processus inélastiques (collisionnels ou radiatifs) perturbent cet équilibre, et la fdv des électrons peut s'écarter considérablement de l'équilibre maxwellien aux hautes énergies. De tels écarts modifient fortement les populations atomiques et le champ radiatif. Les calculs numériques consistent en la comparaison de trois modèles d'atmosphères: en équilibre thermodynamique local (ETL), hors ETL avec électrons thermalisés, et hors ETL avec électrons non thermalisés a priori. Nous avons résolu ce problème dans un plasma d'hydrogène pur en prenant en compte les principaux types d'interaction présents dans les atmosphères stellaires. L'équation cinétique des électrons a été résolue en calculant son terme de collision élastique à l'aide d'un modèle BGK longuement justifié dans la thèse. Notre principale contribution se situe au niveau du transfert de rayonnement. Nous avons utilisé, et surtout développé, les codes de l'équipe "Transfert" de l'Observatoire de Lyon. Les calculs montrent que la fdv des électrons s'écarte considérablement d'une maxwellienne dans la région hors ETL de l'atmosphère stellaire. Pour conclure, nous envisageons quelques extensions possibles de ce travail et certaines applications astrophysiques.
2

Multi-Scale models and computational methods for aerothermodynamics / Modèles muti échelles et méthodes de calcul pour l'aérothermodynamique

Munafo, Alessandro 21 January 2014 (has links)
Cette thèse porte sur le développement de modèles multi-échelles et de méthodes de calcul pour les applications aérothermodynamiques. Le travail de recherche sur les modèles multi-échelles met l’accent sur l’excitation énergétique et la dissociation. L’objectif était double : mieux comprendre la dynamique des processus d'excitation énergétique et dissociation et développer des modèles réduits en diminuant la résolution d’un modèle détaillé de collisions rovibrationnelles. Les résultats obtenus ont montré que les modèles réduits permettent de reproduire avec précision la dynamique d’écoulement prédites par le modèle détaillé de collisions rovibrationnelles. Le travail de recherche sur les méthodes de calcul a porté sur les écoulements raréfiés. L’objectif était de formuler une méthode numérique de type déterministe pour résoudre l’équation de Boltzmann dans le cas de gaz à plusieurs composants y compris l’énergie interne. La méthode numérique est basée sur la structure de convolution pondérée de la transformée de Fourier de l’équation de Boltzmann. La précision de la méthode numérique proposée a été évaluée en comparant les moments extraits de la fonction de distribution de vitesse avec les prédictions de la méthode de simulation directe Monte Carlo (DSMC). Dans toutes les applications étudiées, un excellent accord a été trouvé. / This thesis aimed at developing multi-scale models and computational methods for aerother-modynamics applications. The research on multi-scale models has focused on internal energy excitation and dissociation of molecular gases in atmospheric entry flows. The scope was two-fold: to gain insight into the dynamics of internal energy excitation and dissociation in the hydrodynamic regime and to develop reduced models for Computational Fluid Dynamics applications. The reduced models have been constructed by coarsening the resolution of a detailed rovibrational collisional model developed based on ab-initio data for the N2 (1Σ+g)-N (4Su) system provided by the Computational Quantum Chemistry Group at NASA Ames Research Center. Different mechanism reduction techniques have been proposed. Their appli-cation led to the formulation of conventional macroscopic multi-temperature models and vi-brational collisional models, and innovative energy bin models. The accuracy of the reduced models has been assessed by means of a systematic comparison with the predictions of the detailed rovibrational collisional model. Applications considered are inviscid flows behind normal shock waves, within converging-diverging nozzles and around axisymmetric bodies, and viscous flows along the stagnation-line of blunt bodies. The detailed rovibrational colli-sional model and the reduced models have been coupled to two flow solvers developed from scratch in FORTRAN 90 programming language (SHOCKING_F90 and SOLV-ER_FVMCC_F90). The results obtained have shown that the innovative energy bin models are able to reproduce the flow dynamics predicted by the detailed rovibrational collisional model with a noticeable benefit in terms of computing time. The energy bin models are also more accurate than the conventional multi-temperature and vibrational collisional models. The research on computational methods has focused on rarefied flows. The scope was to formu-late a deterministic numerical method for solving the Boltzmann equation in the case of multi-component gases with internal energy by accounting for both elastic and inelastic collisions. The numerical method, based on the weighted convolution structure of the Fourier trans-formed Boltzmann equation, is an extension of an existing spectral-Lagrangian method, valid for a mono-component gas without internal energy. During the development of the method, particular attention has been devoted to ensure the conservation of mass, momentum and en-ergy while evaluating the collision operators. Conservation is enforced through the solution of constrained optimization problems, formulated in a consistent manner with the collisional in-variants. The extended spectral-Lagrangian method has been implemented in a parallel com-putational tool (best; Boltzmann Equation Spectral Solver) written in C programming lan-guage. Applications considered are the time-evolution of an isochoric gaseous system initially set in a non-equilibrium state and the steady flow across a normal shock wave. The accuracy of the proposed numerical method has been assessed by comparing the moments extracted from the velocity distribution function with Direct Simulation Monte Carlo (DSMC) method predictions. In all the cases, an excellent agreement has been found. The computational results obtained for both space homogeneous and space inhomogeneous problems have also shown that the enforcement of conservation is mandatory for obtaining accurate numerical solutions.
3

Quelques contributions à l'analyse mathématique et numérique d'équations cinétiques collisionnelles / Some contributions to the mathematical and numerical analysis of collisional kinetic equations

Rey, Thomas 21 September 2012 (has links)
Cette thèse est dédiée à l'étude mathématique et numérique d'une classe d'équations cinétiques collisionnelles, de type équation de Boltzmann. Nous avons porté un intérêt tout particulier à l'équation des milieux (ou gaz) granulaires, initialement introduite dans la littérature physique pour décrire le comportement hors équilibre de matériaux composés d'un grand nombre de grains, ou particules, non nécessairement microscopiques, et interagissant par des collisions dissipant l'énergie cinétique. Ces modèles se sont révélés avoir une structure mathématique très riche. Cette thèse se structure en trois partie pouvant être lues de manière indépendante, mais néanmoins en rapport avec des équations cinétiques collisionnelles en général, et l'équation des milieux granulaires en particulier. La première partie est dédiée à l'étude mathématique du comportement asymptotique de certaines équations cinétiques collisionnelles dans un cadre homogène en espace. Nous y montrons des résultats de type explosion et convergence vers la solution autosimilaire avec calcul explicite des taux, pour des opérateurs de type Boltzmann, grâce à l'utilisation (entre autre) d'une nouvelle méthode de changement de variables dépendant directement de la solution de l'équation considérée. En particulier, nous démontrons que pour un modèle de gaz granulaire - dit anormal - il est possible d'observer une explosion en temps fini. Dans la deuxième partie, orientée analyse numérique et calcul scientifique, nous nous intéressons développement et à l'étude de méthodes spectrales pour la résolution de problèmes multi-échelles, issus de la théorie des équations cinétiques collisionnelles. Les méthodes de changement de variables tiennent aussi une place importante dans cette partie, et permettent d'observer numériquement des phénomènes non triviaux qui apparaissent lors de l'étude de gaz granulaires, comme la création d'amas de matière ou la caractérisation précise du retour vers l'équilibre. La troisième et dernière partie est dédiée à l'étude spectrale de l'opérateur des milieux granulaires avec bain thermique, linéarisé au voisinage d'un équilibre homogène en espace, afin d'établir des résultats de type stabilité et convergence vers une limite hydrodynamique. Ce travail est en fait la généralisation d'un résultat célèbre dans la théorie de l'équation de Boltzmann, dû à R. Ellis et M. Pinsky, et établissant rigoureusement la première limite hydrodynamique vers les équations d'Euler compressibles linéaires puis Navier-Stokes de cette équation / This dissertation is dedicated to the mathematical and numerical study of a class of collisional kinetic equations, such as the Boltzmann equation of perfect gases. We took a particular interest in the granular media (or gases) equation, which has been first introduced in the physical literature to describe the nonnequilibrium behavior of materials composed of a large number of grains (the particles) of macroscopic size, interacting through energy dissipative collisions. These models have a very rich mathematical structure. This dissertation is divided in three independent part, all related to the theory of collisional kinetic equation, with a strong emphasis on granular media. The first part concerns the mathematical study of the asymptotic behavior of space homogeneous Boltzmann-like kinetic equations. We prove some blow up results, as well as convergence towards self-similarity, with explicit rates for two different models. One of the key tools of our proofs is the use of a new scaling method, where the scaling function depends on the solution itself. We especially prove that for a particular model of granular gases (also know as anomalous), finite time blow up occurs. The second part is dedicated to the development and study of spectral methods for the resolution of multi-scale problems, coming from the theory of collisional kinetic equations. Some rescaling methods take a very important place in this part, allowing to observe numerically some nontrivial phenomena such as the clustering in space which occurs in the time evolution of a space inhomogeneous granular gas, or to investigate numerically the trend to equilibrium for this equation. The whole third (and last) part is dedicated to the spectral study of the granular gases operator with a thermal bath, linearized near a space homogeneous self-similar profile. The goal of this work is to prove some stability results for the complete space inhomogeneous equation, and to investigate the hydrodynamic limit of the model. This work is based and extend the famous result of R. Ellis and M. Pinsky on the spectrum of the linearized Boltzmann equation, intended to establish rigorously the hydrodynamic limit of this equation towards the linearized Euler and Navier-Stokes equations
4

Conditions aux limites dans un gaz raréfié: loi de réflexion à la paroi, saut de température, vitesse de glissement, couche de Knudsen

Dadzie, S. Kokou 14 December 2005 (has links) (PDF)
Cette thèse aborde le problème de l'interaction gaz/paroi et des conditions aux limites en écoulement de gaz raréfié. Les écoulements dans les microsystèmes et les écoulements autour des engins spatiaux en rentrée atmosphérique ont démontré l'insuffisance des concepts utilisés dans la formulation des conditions aux limites hydrodynamiques existantes. Dans ce travail, nous avons élaboré, dans un premier temps, des modèles<br />de conditions aux limites cinétiques, en développant de manière originale la théorie de " scattering kernel " bien connue dans le domaine de la recherche de conditions aux limites pour l'équation de Boltzmann. Ces modèles sont développés d'une part pour un gaz monoatomique et d'autre part pour un gaz de molécules complexes. Les démonstrations font appel à des formulations intégrales et à une description basée sur la théorie des opérateurs. Elles introduisent la notion de coefficient d'accommodation<br />propre à chaque degré de liberté. Dans un deuxième temps nous avons utilisé ces conditions aux limites<br />cinétiques pour établir des conditions aux limites hydrodynamiques : saut de température<br />- glissement de vitesse. Nous abordons également le problème de la couche limite cinétique (couche de Knudsen) et de la prédiction du flux de chaleur à la paroi. Finalement ces conditions aux limites sont utilisées pour les calculs de coefficients aérodynamiques et de quelques types d'écoulements particuliers. Les résultats sont comparés à ceux donnés par d'autres modèles, ainsi qu'aux résultats expérimentaux.
5

Mathematical modelling and analysis of polyatomic gases and mixtures in the context of kinetic theory of gases and fluid mechanics / Modélisation et analyse mathématique de gaz polyatomiques et de mélanges dans le contexte de la théorie cinétique des gaz et de la mécanique des fluides

Pavić, Milana 25 September 2014 (has links)
En ce qui concerne les gaz polyatomiques, nous proposons deux hiérarchies distinctes formées d'équations de moments, qui permettent d'obtenir des lois de conservation de la densité de masse, de la quantité de mouvement et de l'énergie totale du gaz. Ces hiérarchies sont généralement coupées à un certain ordre. Une méthode qui fournit une solution appropriée au problème de fermeture est la méthode de la maximisation d'entropie. Nous formulons un problème variationnel et nous explorons en détail le cas physique de 14 moments. On étudie un mélange de gaz polyatomiques dans lequel la fonction de distribution de chaque espèce converge vers une Maxwellienne, chacune avec sa propre vitesse moyenne et température. Les lois pour la densité de masse, de quantité de mouvement et d'énergie peuvent être obtenues. En particulier, les coefficients phénoménologiques de la thermodynamique étendue peuvent être déterminés à partir des termes sources. On présente pour les mélanges de gaz monoatomiques l'asymptotique diffusive des équations de Boltzmann. Le développement de Hilbert de chaque fonction de distribution donne deux équations. La première équation permet d'affirmer que le mélange est proche de l'équilibre. La deuxième équation est une équation fonctionnelle linéaire en la variable de vitesse. Nous prouvons l'existence d'une solution de cette équation. D'une part, lorsque les masses moléculaires sont égales, les techniques introduites par Grad peuvent être utilisés. D'autre part, nous proposons une nouvelle approche qui est valable lorsque les masses moléculaires sont différentes. / Considering polyatomic gases, we first propose two independent hierarchies of the moment equations, which allow to obtain conservation laws for mass density, momentum and total energy of a gas. Such hierarchies are usually truncated at some order. A method which provides an appropriate solution to the closure problem is the maximization of entropy method. We formulate a variational problem and explore in detail the physical case of 14 moments. We study mixtures of polyatomic gases in which the distribution function of each species converges towards a Maxwellian distribution function, each with its own bulk velocity and temperature. Balance laws for mass density, momentum and energy can be obtained. In particular, the phenomenological coefficients of extended thermodynamics can be determined from the source terms. Regarding mixtures of monatomic gases, we discuss the diffusion asymptotics of the Boltzmann equations. The Hilbert expansion yields two equations. The first equation allows to state that the mixture is close to equilibrium. The second equation is a linear functional equation in the velocity variable. We prove the existence of a solution to this equation. On the one hand, when molecular masses are equal, the techniques introduced by Grad can be used. On the other hand, we propose a new approach, which only holds when molecular masses are different.
6

Etude des écoulements gazeux isothermes en microconduit : du régime hydrodynamique au proche régime moléculaire libre

Ewart, Timothée 07 September 2007 (has links) (PDF)
Ce travail de thèse porte sur l'étude expérimentale, numérique et théorique des écoulements isothermes dans les microtubes et les microcanaux pour différents gaz. Le volet proprement expérimental porte sur la mesure des débits. Ce volet est complété d'abord par la mise en oeuvre d'une méthode de Monte Carlo permettant d'atteindre le profil des vitesses dans des sections choisies. Ces résultats sont comparés a ceux donnés par différentes approches théoriques et numériques : approche NS continue en régime de glissement, approches cinétiques (Boltzmann linéarisé, BGK) en régime transitionnel ou en régime moléculaire libre. A travers ces comparaisons on détermine notamment le domaine de validité du régime de glissement (premier et second ordre), des valeurs du coefficient d'accommodation de la composante tangentielle de la quantité de mouvement, les valeurs du coefficient du second ordre en régime de glissement ainsi que les grandeurs dont il dépend. On analyse aussi le comportement asymptotique de l'écoulement (débit) quand le nombre de Knudsen devient très grand.
7

Quelques contributions à l'analyse mathématique et numérique d'équations cinétiques collisionnelles

Rey, Thomas 21 September 2012 (has links) (PDF)
Cette thèse est dédiée à l'étude mathématique et numérique d'une classe d'équations cinétiques collisionnelles, de type équation de Boltzmann. Nous avons porté un intérêt tout particulier à l'équation des milieux (ou gaz) granulaires, initialement introduite dans la littérature physique pour décrire le comportement hors équilibre de matériaux composés d'un grand nombre de grains, ou particules, non nécessairement microscopiques, et interagissant par des collisions dissipant l'énergie cinétique. Ces modèles se sont révélés avoir une structure mathématique très riche. Cette thèse se structure en trois partie pouvant être lues de manière indépendante, mais néanmoins en rapport avec des équations cinétiques collisionnelles en général, et l'équation des milieux granulaires en particulier. La première partie est dédiée à l'étude mathématique du comportement asymptotique de certaines équations cinétiques collisionnelles dans un cadre homogène en espace. Nous y montrons des résultats de type explosion et convergence vers la solution autosimilaire avec calcul explicite des taux, pour des opérateurs de type Boltzmann, grâce à l'utilisation (entre autre) d'une nouvelle méthode de changement de variables dépendant directement de la solution de l'équation considérée. En particulier, nous démontrons que pour un modèle de gaz granulaire - dit anormal - il est possible d'observer une explosion en temps fini. Dans la deuxième partie, orientée analyse numérique et calcul scientifique, nous nous intéressons développement et à l'étude de méthodes spectrales pour la résolution de problèmes multi-échelles, issus de la théorie des équations cinétiques collisionnelles. Les méthodes de changement de variables tiennent aussi une place importante dans cette partie, et permettent d'observer numériquement des phénomènes non triviaux qui apparaissent lors de l'étude de gaz granulaires, comme la création d'amas de matière ou la caractérisation précise du retour vers l'équilibre. La troisième et dernière partie est dédiée à l'étude spectrale de l'opérateur des milieux granulaires avec bain thermique, linéarisé au voisinage d'un équilibre homogène en espace, afin d'établir des résultats de type stabilité et convergence vers une limite hydrodynamique. Ce travail est en fait la généralisation d'un résultat célèbre dans la théorie de l'équation de Boltzmann, dû à R. Ellis et M. Pinsky, et établissant rigoureusement la première limite hydrodynamique vers les équations d'Euler compressibles linéaires puis Navier-Stokes de cette équation.

Page generated in 0.0697 seconds