• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1524
  • 532
  • 216
  • 216
  • 34
  • 26
  • 22
  • 17
  • 13
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • Tagged with
  • 3478
  • 830
  • 435
  • 406
  • 332
  • 272
  • 266
  • 255
  • 160
  • 154
  • 151
  • 141
  • 135
  • 134
  • 130
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

A study of the reactive deposition of cobalt in aqueous and non-aqueous (DMF) solutions

Cui, Cheng-Qiang January 1991 (has links)
No description available.
152

The investigation of the in vivo behaviour of a maize herbicide : Isoxaflutole

Crudace, Amanda Jayne January 2000 (has links)
No description available.
153

'Some studies of the mechanism of action of glyoxalase 1'

Carrington, S. January 1987 (has links)
No description available.
154

Kinetic and product studies involving thionitrites

Morris, Philippa Ann January 1987 (has links)
The kinetics of nitrosation of cysteine, cysteine methyl ester, N-acetylcysteine, penicillamine, N-acetylpenicillamine, glutathione and thioglycolic acid was undertaken. These thiols exhibited identical rate laws which are interpreted as nitrosation at sulphur by H(_2)NO(_2)(^+)/NO(^+). The rate constants determined show the high reactivity of thiols towards the nitrosating agent. The nucleophile catalyzed reactions were also investigated and the order of reactivity NOCl > NOBr > NOSCN was observed. Normally in these nucleophile catalyzed reactions there is a first order dependence on [thiol]. However, for N-acetylcysteine and thioglycolic' acid at high [thiol] the rate of formation of NOX tends to become the rate determining stage. The difference in rate constants between cysteine and penicillamine and their N-acetyl derivatives is explained in terms of internal stabilization. The decomposition of S-nitrosocysteine (S-NOCys) at pH 5.5, 7 and 9.8 in the presence and absence of C1(^-), Br(^-) and SCN(^-), and also alanine and sodium bicarbonate at pH 7, and S-nitrosoglutathione (GS-NO) at pH 7 in the presence and absence of alanine, C1(^-), and sodium bicarbonate was studied. The decomposition profiles were complex, but showed that S-NOCys was least stable at pH 7, and that GS-NO was more stable than S-NOCys. The addition of the aforementioned species did not significantly affect the rate of decomposition of the thionitrites. Finally the potential of S-NOCys, GS-NO and S-nitroso-N-acetyl- penicillamine as nitrosating agents towards amines was investigated at pH 7 and pH 8. These thionitrites nitrosated morpholine to give approximately the same yield of N-nitrosomorpholine (ca -17%) at pH 7, and less at pH 8 for S-NOCys and GS-NO. The addition of sodium acetate, sodium chloride, sodium bicarbonate, alanine and glucose, compounds liable to be present in vivo, did not significantly affect the yield of N-nitrosomorpholine. The transnitrosation reaction was complete before total decomposition of the thionitrite and a direct reaction between the thionitrite and morpholine is proposed.
155

Modelling of continuous crystallisers

Patel, M. January 1985 (has links)
No description available.
156

Infra-red microspectroscopy of diamond in relation to mantle processes

Cooper, Guy Ian January 1990 (has links)
No description available.
157

The oxygen uptake slow component in human locomotion

Pringle, Jamie S. M. January 2002 (has links)
No description available.
158

The kinetics of flowing dispersions.

Okagawa, Akio. January 1973 (has links)
No description available.
159

Kinetics of hydrolysis reactions in water-glycerol mixtures

Richards, Charles Norman January 1968 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii, 1968. / Bibliography: leaves [70]-73. / vii, 73 l graphs, tables
160

Intrinsic reaction kinetics of coal chars with oxygen, carbon dioxide and steam at elevated pressures

Roberts, Daniel Geoffrey January 2000 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / An increased demand worldwide for the reduction in pollutants emitted from coal-fired power stations has meant that advanced coal utilisation technologies are being sought as alternatives to pulverised fuel (pf) fired plants. The leading systems use coal gasification to produce a fuel gas which is cleaned and used in a combined-cycle gas turbine system. This produces electricity at high efficiencies and with significant reductions in the emissions of CO2, N- and S- gases and particulates. These systems offer the emission levels approaching those of natural gas combined-cycle plants, with the low fuel cost of coal. Modern coal gasification technologies operate with high temperatures and at pressures many times that of pf boilers: the reliability and efficiency of gasification-based systems are strongly influenced by the performance of the coal used under these conditions. The high-intensity nature of these processes means that generating experimental coal performance data for coal assessment and reactor design is time consuming, expensive or even impossible due to the lack of suitable facilities. Using process models based on fundamental gasification phenomena, coal performance can be predicted over a range of conditions. This is beneficial for both the development of new gasification technologies and in the assessment of Australian coals for use in the evolving international market. The slowest stage of the coal gasification process, i.e. the conversion of the char, has been identified as an important parameter for the design and implementation of such models. In particular, the intrinsic reactivity—characterised by data measured under conditions where chemical processes alone control the reaction rates—is extremely important, as intrinsic data can be readily combined with char physical properties to predict the high-temperature reaction rates of coal chars. The lack of intrinsic data generated at pressures relevant to modern gasification systems has meant that kinetic input into process models has been somewhat unreliable. In particular, there are no high-pressure reactivity data—intrinsic or otherwise—available for Australian black coals. To address this need, work in this thesis has used a pressurised thermogravimetric analyser to measure the effects of pressure (up to 30 atm) on the intrinsic reactivities to O2, CO2 and H2O of several Australian black coal chars, at emperatures between 350 and 900°C. These chars were made under a range of pressures and heating rates, and were in the size range 100 μm to 1.0 mm. In particular, the experiments were performed under conditions where chemical processes alone controlled the reaction rates, and where inhibition of the respective reactions by the products was negligible. It was found (using chars made in bulk at atmospheric pressure with slow heating rates) that whilst the reaction rate increased with reactant pressure in all gases, at pressures above approximately 15–20 atm the rates of reaction with CO2 and H2O ceased to increase with pressure. There was no such observation for the char–O2 reaction up to 16 atm. Activation energies of the reactions were unaffected by pressure. Samples made at high pressures and with high heating rates were found to be orders of magnitude more reactive than the chars made at atmospheric pressure under slow heating rates. These differences were found to be largely due to an increased microporous surface area, such that the intrinsic reactivities (calculated using the CO2 adsorption surface area) were similar. The effects of variations in pyrolysis pressure and parent coal petrography (and consequently char morphology) were also largely accounted for by char surface area, such that intrinsic rates were not greatly affected by these variables. These intrinsic reaction rate data were examined to produce a modified version of the nth order rate equation. This incorporated a pressure order that decreased as the reactant pressure increased, based on the physical process of available surface saturation. This model was compared with measured data and it was shown that the predictive capability of the nth order rate equation over a range of pressures was improved. There is scope for further refinement of this model by investigating the effects of reactant pressure on the development of the surface area of the char during conversion, since it was shown in this work that pressure has a strong effect on the such development. Moreover, this effect of pressure was not consistent between reactant and coal char type. This kinetic model was combined with measured char properties such as surface area, pore size, etc. to crudely predict the high temperature reactivity of a sample. This demonstrated the usefulness of reliable intrinsic data in the development of high temperature gasification models, and highlighted the need for experimental data obtained under process conditions of high temperature and pressure that can be used to validate such models.

Page generated in 0.0549 seconds