• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formulation, characterisation and topical application of oil powders from whey protein stabilised emulsions / Magdalena Kotze

Kotze, Magdalena January 2014 (has links)
The available literature indicates that to date, few research has been performed on oil powders for topical delivery. The aim of this project was to investigate the release characteristics of oil powder formulations, as well as their dermal and transdermal delivery properties. Whey protein-stabilised emulsions were used to develop oil powders. Whey protein was used alone, or in combination with chitosan or carrageenan. Nine oil powders, with salicylic acid as the active ingredient, were formulated by using the layer-by-layer method. Three different pH values (pH 4, 5 and 6) were used to prepare the formulations, because of the different charges that polymeric emulsifiers may have. The characteristics of the prepared oil powders were determined, including their droplet sizes, particle size distributions, loss on drying, encapsulation efficiencies, oil leakage and water dispersibility. Release studies (membrane diffusion studies) were conducted by utilising cellulose acetate membranes (0.2 μm pore size) and Franz-type diffusion cells over a period of eight hours. The release of the active ingredient was determined for all nine powders, their respective template emulsions, as well as their respective oil powders redispersed in water. The release of salicylic acid from the respective redispersed oil powders was then further compared to its release from the template emulsions and from the oil powders. The effect of pH and different polymer types used in preparing the oil powders, their respective redispersed oil powders and the template emulsions were determined with regards to the release of the active ingredient from all these preparations. The effect of pH and different polymers used was furthermore determined on the oil powders and their respective redispersed oil powders, with regards to their dermal and transdermal deliveries. Transdermal delivery and skin uptake were investigated on specifically selected powders only, based on the outcomes of the oil powder characterisation and release data. The qualifying formulations were chitosan pH 4, 5 and 6, whey and carrageenan pH 6 oil powders, together with their respective redispersed oil powders in water. Human abdominal skin was dermatomed (thickness 400 μm) for use in the diffusion studies. Franz-type diffusion cells were used over a period of 24 hours. The results of the membrane release studies indicated that the oil powders had achieved a significantly higher release than their respective redispersed oil powders. The release of salicylic acid from the redispersed oil powders and from their respective emulsions was similar. The transdermal delivery test outcomes showed that the effect of pH could have been influenced by the degree of ionisation, resulting in a decrease in permeation with increasing ionisation of salicylic acid, in accordance with the pH partition hypothesis. Furthermore, biopolymers, such as chitosan had demonstrated a penetration enhancing effect, which had led to the enhanced dermal and transdermal delivery of salicylic acid. A correlation was also found between the powder particle size and transdermal delivery. / MSc (Pharmaceutics), North-West University, Potchefstroom Campus, 2014
2

Formulation, characterisation and topical application of oil powders from whey protein stabilised emulsions / Magdalena Kotze

Kotze, Magdalena January 2014 (has links)
The available literature indicates that to date, few research has been performed on oil powders for topical delivery. The aim of this project was to investigate the release characteristics of oil powder formulations, as well as their dermal and transdermal delivery properties. Whey protein-stabilised emulsions were used to develop oil powders. Whey protein was used alone, or in combination with chitosan or carrageenan. Nine oil powders, with salicylic acid as the active ingredient, were formulated by using the layer-by-layer method. Three different pH values (pH 4, 5 and 6) were used to prepare the formulations, because of the different charges that polymeric emulsifiers may have. The characteristics of the prepared oil powders were determined, including their droplet sizes, particle size distributions, loss on drying, encapsulation efficiencies, oil leakage and water dispersibility. Release studies (membrane diffusion studies) were conducted by utilising cellulose acetate membranes (0.2 μm pore size) and Franz-type diffusion cells over a period of eight hours. The release of the active ingredient was determined for all nine powders, their respective template emulsions, as well as their respective oil powders redispersed in water. The release of salicylic acid from the respective redispersed oil powders was then further compared to its release from the template emulsions and from the oil powders. The effect of pH and different polymer types used in preparing the oil powders, their respective redispersed oil powders and the template emulsions were determined with regards to the release of the active ingredient from all these preparations. The effect of pH and different polymers used was furthermore determined on the oil powders and their respective redispersed oil powders, with regards to their dermal and transdermal deliveries. Transdermal delivery and skin uptake were investigated on specifically selected powders only, based on the outcomes of the oil powder characterisation and release data. The qualifying formulations were chitosan pH 4, 5 and 6, whey and carrageenan pH 6 oil powders, together with their respective redispersed oil powders in water. Human abdominal skin was dermatomed (thickness 400 μm) for use in the diffusion studies. Franz-type diffusion cells were used over a period of 24 hours. The results of the membrane release studies indicated that the oil powders had achieved a significantly higher release than their respective redispersed oil powders. The release of salicylic acid from the redispersed oil powders and from their respective emulsions was similar. The transdermal delivery test outcomes showed that the effect of pH could have been influenced by the degree of ionisation, resulting in a decrease in permeation with increasing ionisation of salicylic acid, in accordance with the pH partition hypothesis. Furthermore, biopolymers, such as chitosan had demonstrated a penetration enhancing effect, which had led to the enhanced dermal and transdermal delivery of salicylic acid. A correlation was also found between the powder particle size and transdermal delivery. / MSc (Pharmaceutics), North-West University, Potchefstroom Campus, 2014
3

Hemocompatibility of N-trimethyl chitosan chloride nanoparticles / Lizl du Toit

Du Toit, Lizl January 2014 (has links)
Research on nanoparticles for pharmaceutical applications has become increasingly popular in recent years. N-trimethyl chitosan chloride (TMC) is a cationic polymer that can enhance absorption across mucosal surfaces. It has been explored as a nanoparticulate drug delivery system for the delivery of vaccines, vitamins, insulin and cancer medication. It has special interest for intravenous use, as it is soluble over a wide range of pH values. However, polycationic nanoparticles run a great risk for intravenous toxicity, as the positive surface charge allows easy electrostatic interactions with negatively charged blood components, such as red blood cells and plasma proteins. Additionally, the small size of the nanoparticles permits the binding of more proteins per mass, than larger particles do. These interactions can lead to extensive hemolysis, cell aggregation, complement activation, inflammation and fast clearance of the particles from the circulation. A decrease in the surface charge density can ameliorate these toxic interactions. Such a decrease is achieved by adding poly(ethylene) glycol (PEG) to the particle’s formulation. PEG creates a steric shield around the particles, preventing a certain extent of interaction between the particles and the blood components. To be able to use TMC nanoparticles as a successful drug delivery system, the hemocompatibility must first be determined, which was the aim of this study. The influence of particle size, concentration and the addition of PEG were also examined. The extent of hemolysis and cell aggregation caused by the experimental groups (20% and 60% concentration small TMC nanoparticles, 20% larger TMC nanoparticles and 20% cross-linked PEGTMC nanoparticles) were determined by incubating the groups with whole blood and/or blood components. Complement activation was determined with a Complement C3 Human enzyme-linked immunosorbent assay (ELISA) and plasma protein interactions were quantified through rapid equilibrium dialysis and a colorimetric assay. It was determined that 60% concentration small TMC nanoparticles caused 49.08 ± 2.538% hemolysis at the end of a 12-hour incubation period, significantly more than any other experimental group. This group had also caused mild aggregation of the white blood cells and platelets. This was the greatest extent of cell aggregation seen in any of the groups. No significant complement activation was seen by any of the experimental groups. Because of the cationic nature of the particles, all groups had more than 50% of the initial particles in the sample bound to plasma proteins after a 4-hour incubation period. However, at 90.68 ± 0.828%, the 60% small TMC nanoparticles had had significantly more interaction with the plasma proteins than the other groups. Through the experimental measurements it was revealed that TMC nanoparticles had hemotoxic effects at high concentrations. The addition of PEG to the particle formulation stabilized the particles and decreased their zeta potential , but had no significant effect on improving hemocompatibility. It was concluded that although further tests are needed, TMC nanoparticles seem to have potential as a successful intravenous carrier for high molecular weight active pharmaceutical ingredients. / MSc (Pharmaceutics), North-West University, Potchefstroom Campus, 2014
4

Hemocompatibility of N-trimethyl chitosan chloride nanoparticles / Lizl du Toit

Du Toit, Lizl January 2014 (has links)
Research on nanoparticles for pharmaceutical applications has become increasingly popular in recent years. N-trimethyl chitosan chloride (TMC) is a cationic polymer that can enhance absorption across mucosal surfaces. It has been explored as a nanoparticulate drug delivery system for the delivery of vaccines, vitamins, insulin and cancer medication. It has special interest for intravenous use, as it is soluble over a wide range of pH values. However, polycationic nanoparticles run a great risk for intravenous toxicity, as the positive surface charge allows easy electrostatic interactions with negatively charged blood components, such as red blood cells and plasma proteins. Additionally, the small size of the nanoparticles permits the binding of more proteins per mass, than larger particles do. These interactions can lead to extensive hemolysis, cell aggregation, complement activation, inflammation and fast clearance of the particles from the circulation. A decrease in the surface charge density can ameliorate these toxic interactions. Such a decrease is achieved by adding poly(ethylene) glycol (PEG) to the particle’s formulation. PEG creates a steric shield around the particles, preventing a certain extent of interaction between the particles and the blood components. To be able to use TMC nanoparticles as a successful drug delivery system, the hemocompatibility must first be determined, which was the aim of this study. The influence of particle size, concentration and the addition of PEG were also examined. The extent of hemolysis and cell aggregation caused by the experimental groups (20% and 60% concentration small TMC nanoparticles, 20% larger TMC nanoparticles and 20% cross-linked PEGTMC nanoparticles) were determined by incubating the groups with whole blood and/or blood components. Complement activation was determined with a Complement C3 Human enzyme-linked immunosorbent assay (ELISA) and plasma protein interactions were quantified through rapid equilibrium dialysis and a colorimetric assay. It was determined that 60% concentration small TMC nanoparticles caused 49.08 ± 2.538% hemolysis at the end of a 12-hour incubation period, significantly more than any other experimental group. This group had also caused mild aggregation of the white blood cells and platelets. This was the greatest extent of cell aggregation seen in any of the groups. No significant complement activation was seen by any of the experimental groups. Because of the cationic nature of the particles, all groups had more than 50% of the initial particles in the sample bound to plasma proteins after a 4-hour incubation period. However, at 90.68 ± 0.828%, the 60% small TMC nanoparticles had had significantly more interaction with the plasma proteins than the other groups. Through the experimental measurements it was revealed that TMC nanoparticles had hemotoxic effects at high concentrations. The addition of PEG to the particle formulation stabilized the particles and decreased their zeta potential , but had no significant effect on improving hemocompatibility. It was concluded that although further tests are needed, TMC nanoparticles seem to have potential as a successful intravenous carrier for high molecular weight active pharmaceutical ingredients. / MSc (Pharmaceutics), North-West University, Potchefstroom Campus, 2014

Page generated in 0.0284 seconds