Spelling suggestions: "subject:"knochenzemente"" "subject:"knochenzementen""
1 |
Entwicklung und Charakterisierung vorgemischter lagerstabiler Zementpasten für den 3D-Druck / Development and characterization of premixed cement pastes for 3D printingJung, Melissa January 2021 (has links) (PDF)
Ziel dieser Arbeit war die Entwicklung und Charakterisierung vorgemischter Calciumphosphatzementpasten sowie die Übertragung des Konzepts dieser Pasten auf den 3D-Druck. Es wurden drei verschiedene Zementformulierungen untersucht, basierend auf Pulvermischungen aus α-TCP/DCPA/CaCO3 (Biozement D), TTCP/DCPA und β-TCP/MCPA, die auf verschiedene Materialeigenschaften geprüft und einem 3D-Druckversuch unterzogen wurden. Die Biozement D Paste wurde mit drei Pulver-Flüssigkeits-Verhältnissen (PLR) (80/20, 85/15, 87/13), die TTCP/DCPA Paste mit zwei PLR (83/17, 85/15), und die β-TCP/MCPA Paste ebenfalls mit zwei PLR (67/33, 70/30) getestet. Alle Pasten konnten mit dem 3D-Drucker erfolgreich verdruckt werden. Die Biozement D Paste mit dem PLR 85/15 stellte sich in ihrer Gruppe als die geeignetste Paste heraus. Bessere Ergebnisse bezüglich der Injizierbarkeit und Druckbarkeit erreichte die TTCP/DCPA Paste. Hier wurden mit beiden PLR formstabile Scaffolds erzielt. Feine Wabenmuster konnten mit dem PLR von 83/17 in Kombination mit einer hohen Druckgeschwindigkeit hergestellt werden. Mit dem höheren PLR (85/15) und einer niedrigeren Druckgeschwindigkeit stieg die Formstabilität weiter an, wodurch die hexagonale Struktur exakter gedruckt werden konnte. Ein gutes Druckergebnis konnte auch mit der β-TCP/MCPA Paste und dem PLR 70/30 erreicht werden. / The aim of this work was the development and characterization of pre-mixed calcium phosphate cement pastes and the transfer of the concept of these pastes to 3D printing. Three different cement formulations were tested, based on powder mixture of α-TCP/DCPA/CaCO3 (Biozement D), TTCP/DCPA and β-TCP/MCPA, which were analyzed for various material properties and subjected to a 3D printing process. The Biozement D paste was made with three powder-to-liquid ratios (PLR) (80/20, 85/15, 87/13), the TTCP/DCPA paste with two PLRs (83/17, 85/15), and the β-TCP/MCPA paste also with two PLR (67/33, 70/30). Every paste could be successfully printed with the 3D printer. The Biozement D paste with the PLR 85/15 turned out to be the most suitable paste in its group. The TTCP/DCPA paste achieved better results in terms of injectability and printability. Dimensionally stable scaffolds were achieved with both PLR. Fine honeycomb patterns could be produced with the PLR of 83/17 in combination with a high printing speed. With the higher PLR (85/15) and a lower printing speed, the dimensional stability increased further, which enabled the hexagonal structure to be printed more precisely. A good print result could also be achieved with the β-TCP/MCPA paste and the PLR 70/30.
|
2 |
In vitro Testung neuer Anwendungsformen kalthärtender Knochenzemente aus resorbierbaren Orthophosphaten / In vitro testing of new applications of cold-curing bone cements from absorbable orthophosphatesBengel, Melanie January 2019 (has links) (PDF)
Ziel der vorliegenden Arbeit war die Herstellung und Erprobung von innovativen Anwendungsformen kalthärtender Knochenersatzmaterialien aus Calcium-, und Magnesiumphosphaten, die nach dem Abbindevorgang vorzugsweise aus dem Mineral Struvit (MgNH4PO4·6H2O) bestehen. Diese neuartigen Knochenzemente versprechen im Vergleich zu den herkömmlichen Knochenersatzmaterialien eine deutlich schnellere knöcherne Regeneration und Abbaubarkeit. Damit wird das Ziel verfolgt schneller Implantate setzen zu können und dem Patienten somit eine lange Wartezeit und dementsprechenden Leidensdruck ersparen zu können. Ebenso müssen konventionelle Produkte erst im OP angerührt und hiernach in einem schmalen Zeitfenser verarbeitet werden. Die präfabrizierten Zement-Pasten sind dagegen direkt applikationsbereit und härten erst nach Kontakt mit dem feuchten Milieu aus. In vorangegangenen Projekten wurden sowohl präfabrizierte Pasten als auch Granulate auf Basis Struvit-bildender Calcium-Magnesiumphosphate erfolgreich entwickelt. Vorteil dieser Granulate ist ihre sphärische Form. Im Hinblick auf die klinische Anwendbarkeit sollten in der vorliegenden Studie beide Anwendungsformen vorgreifend auf eine tierexperimentelle Studie hinsichtlich ihrer Materialeigenschaften in vitro getestet werden. / The aim of the present work was the production and testing of innovative application forms of cold-curing bone replacement materials from calcium and magnesium phosphates, which after the binding process preferably consist of the mineral struvit (MgNH4PO4-6H2O). Compared to conventional bone replacement materials, these novel bone cements promise significantly faster bony regeneration and degradability. The aim is to be able to put implants faster and thus to save the patient a long waiting time and corresponding suffering pressure. Similarly, conventional products must first be stirred in the operating room and then processed in a narrow time-fenser. The prefabricated cement pastes, on the other hand, are directly ready for application and harden only after contact with the damp environment. In previous projects, both prefabricated pastes and granules based on struvit-forming calcium-magnesium phosphates were successfully developed. The advantage of these granules is their spherical shape. With regard to clinical applicability, both forms of application should be tested in vitro in the present study in anticipation of an animal-experimental study with regard to their material properties.
|
3 |
Processing of calcium and magnesium phosphate cements for bone substitution / Verarbeitung von Calcium- und Magnesiumphosphatzementen als KnochenersatzMeininger [geb. Christ], Susanne January 2018 (has links) (PDF)
The main focus of this thesis was the processing of different calcium and magnesium phosphate cements together with an optimization of mechanical and biological properties. Therefore, different manufacturing techniques like 3D powder printing and centrifugally casting were employed for the fabrication of reinforced or biomedically improved implants.
One of the main problems during 3D powder printing is the low green strength of many materials, especially when they are only physically bonded and do not undergo a setting reaction. Such materials need post-treatments like sintering to exhibit their full mechanical performance. However, the green bodies have to be removed from the printer requiring a certain stability. With the help of fiber reinforcement, the green strength of printed gypsum samples could be increased by the addition of polymeric and glass fibers within the printing process. The results showed that fiber reinforcement during 3D powder printing is possible and opens up diverse opportunities to enhance the damage tolerance of green bodies as well as directly printed samples. The transfer to biomedically relevant materials like calcium and magnesium phosphate cements and biocompatible fibers would be the next step towards reinforced patient-specific implants.
In a second approach, centrifugally casting derived from construction industries was established for the fabrication of hollow bioceramic cylinders. The aim was the replacement of the diaphysis of long bones, which exhibit a tubular structure with a high density of cortical bone on the fringe. By centrifugation, cement slurries with and without additives could be fabricated to tubes. As a first establishment, the processing parameters regarding the material (e.g. cement composition) as well as the set-up (e.g. rotation times) had to be optimized for each system. In respect of mechanics, such tubes can keep up with 3D powder printed tubes, although the mechanical performance of 3D printed tubes is strongly dependent on printing directions. Additionally, some material compositions like dual setting systems cannot be fabricated by 3D powder printing. Therefore, a transfer of such techniques to centrifugally casting enabled the fabrication of tubular structures with an extremely high damage tolerance due to high deformation ability. A similar effect was achieved by fiber (mesh) addition, as already shown for 3D powder printing. Another possibility of centrifugally casting is the combination of different materials resulting in graded structures to adjust implant degradation or bone formation. This became especially apparent for the incorporation of the antibiotic vancomycin, which is used for the treatment of bacterial implant infections. A long-term release could be achieved by the entrapment of the drug between magnesium phosphate cement layers. Therefore, the release of the drug could be regulated by the degradation of the outer shell, which supports the release into an acidic bacterial environment. The centrifugally casting technique exhibited to be a versatile tool for numerous materials and applications including the fabrication of non-centrosymmetric patient-specific implants for the reconstruction of human long bones.
The third project aimed to manufacture strontium-substituted magnesium phosphate implants with improved biological behavior by 3D powder printing. As the promoting effect of strontium on bone formation and the inhibitory impact on bone resorption is already well investigated, the incorporation of strontium into a degradable magnesium phosphate cement promised a fast integration and replacement of the implant. Porous structures were obtained with a high pore interconnectivity that is favorable for cell invasion and bone ingrowth. Despite the porosity, the mechanical performance was comparable to pure magnesium phosphate cement with a high reliability of the printed samples as quantitatively determined by Weibull statistics. However, the biological testing was impeded by the high degradation rate and the relating ion release. The high release of phosphate ions into surrounding media and the detachment of cement particles from the surface inhibited osteoblast growth and activity. To distinguish those two effects, a direct and indirect cell seeding is always required for degradable materials. Furthermore, the high phosphate release compared to the strontium release has to be managed during degradation such that the adverse effect of phosphate ions does not overwhelm the bone promoting effect of the strontium ions.
The manufacturing techniques presented in this thesis together with the material property improvement offer a diverse tool box for the fabrication of patient-specific implants. This includes not just the individual implant shape but also the application like bone growth promotion, damage tolerance and local drug delivery. Therefore, this can act as the basis for further research on specific medical indications. / Der Fokus dieser Dissertation lag auf der Verarbeitung von Calcium- und Magnesiumphosphatzementen zusammen mit der Optimierung mechanischer und biologischer Eigenschaften. Dazu wurden verschiedene Produktionsverfahren wie beispielsweise der 3D Pulverdruck und der Schleuderguss verwendet, um mechanisch verstärkte oder biomedizinisch verbesserte Implantate herzustellen.
Eines der Hauptprobleme des 3D Pulverdrucks ist die geringe Festigkeit des Grünkörpers vieler Materialien, besonders wenn diese lediglich physikalisch gebunden sind und keine Abbindereaktion durchlaufen. Solche Materialien müssen nachbearbeitet werden, beispielsweise durch Sintern, um ihre volle mechanische Leistungsfähigkeit zu entfalten. Die Grünkörper müssen jedoch aus dem 3D Drucker entnommen werden können, was eine gewisse Stabilität erfordert. Mit Hilfe der Faserverstärkung konnte die Festigkeit von gedruckten Grünkörper aus Gips erhöht werden, indem Polymer- und Glasfasern innerhalb des Druckprozesses eingebracht wurden. Die Ergebnisse zeigten, dass Faserverstärkung innerhalb des 3D Pulverdrucks möglich ist und dabei vielfältige Möglichkeiten eröffnet, um die Schadenstoleranz von Grünkörpern wie auch von direkt gedruckten Proben zu verbessern. Der nächste Schritt hin zu verstärkten, patientenspezifischen Implantaten wäre die Übertragung auf biomedizinisch relevante Materialien wie Calcium- und Magnesiumphosphatzemente und biokompatible Fasern.
In einem zweiten Ansatz wurde der aus dem Baugewerbe stammende Schleuderguss für die Herstellung hohler Zylinder aus Biokeramik etabliert. Das Ziel war es, die Diaphyse von Röhrenknochen zu ersetzen, die eine tubuläre Struktur mit einer hohen Dichte an kortikalem Knochen am Rand aufweist. Durch Zentrifugieren konnten Zementpasten mit und ohne Additive zu Röhren verarbeitet werden. Zunächst mussten dabei die Prozessparameter bezüglich Material (z.B. Zementzusammensetzung) ebenso wie bezüglich der Einstellungen (z.B. Rotationszeiten) für jedes System optimiert werden. Im Hinblick auf ihre mechanischen Eigenschaften können solche Röhren mit 3D pulvergedruckten Röhren mithalten, obwohl die mechanische Leistungsfähigkeit von 3D gedruckten Röhren stark von der Druckrichtung abhängt. Zusätzlich können einige Materialkombinationen wie dual-abbindende Systeme nicht mit 3D Pulverdruck verarbeitet werden. Daher ermöglicht eine Übertragung solcher Techniken auf den Schleuderguss die Fertigung tubulärer Strukturen mit extrem hoher Schadenstoleranz aufgrund hoher Verformbarkeit. Wie bereits für das 3D Pulverdrucken gezeigt, konnte ein ähnlicher Effekt durch die Zugabe von Fasern (Geweben) erzielt werden. Eine weitere Möglichkeit des Schleudergusses ist die Kombination verschiedener Materialien zu gradientenartigen Strukturen, um den Implantatabbau oder die Knochenbildung anzupassen. Dies war besonders wichtig für die Einbringung des Antibiotikums Vancomycin, das für die Behandlung bakterieller Implantatinfektionen eingesetzt wird. Eine Langzeitfreisetzung konnte durch den Einbau des Arzneistoffs zwischen Magnesiumphosphatschichten erreicht werden. Dadurch konnte die Freisetzung des Wirkstoffs durch den Abbau der äußeren Hülle geregelt werden, was die Freisetzung in das saure Milieu von Bakterien unterstützt. Der Schleuderguss erwies sich als vielseitiges Werkzeug für viele Materialien und Anwendungen, was die Herstellung von nicht-zentrosymmetrischen, patientenspezifischen Implantaten zur Rekonstruktion von menschlichem Röhrenknochen einschließt.
Das dritte Projekt zielte auf die Herstellung Strontium-substituierter Magnesiumphosphatimplantaten mittels 3D Pulverdruck mit verbessertem biologischen Verhalten ab. Da die unterstützende Wirkung von Strontium auf die Knochenbildung und die Hemmung des Knochenabbaus bereits eingehend untersucht sind, versprach die Einbringung von Strontium in den abbaubaren Magnesiumphosphatzement eine schnelle Integration und Ersatz des Implantats. Es konnten poröse Strukturen mit einer hohen Poreninterkonnektivität erhalten werden, was förderlich für die Einwanderung von Zellen und das Einwachsen von Knochen ist. Neben der Porosität waren auch die mechanischen Eigenschaften vergleichbar mit reinem Magnesiumphosphatzement mit einer hohen Verlässlichkeit der gedruckten Proben, was quantitativ durch eine Weibullstatistik bestimmt wurde. Die biologische Testung wurde allerdings durch die hohe Degradationsrate und der damit einhergehenden Ionenfreisetzung erschwert. Die hohe Freisetzung von Phosphationen in das umgebende Medium und die Ablösung von Zementpartikeln von der Oberfläche verhinderten das Wachstum und Aktivität der Osteoblasten. Um diese beiden Effekte voneinander unterscheiden zu können, war eine direkte und indirekte Zellbesiedelung der abbaubaren Materialien notwendig. Des Weiteren muss die hohe Phosphatfreisetzung im Vergleich zur Strontiumfreisetzung während des Abbaus derart gesteuert werden, dass die negativen Effekte der Phosphationen nicht die Förderung des Knochenaufbaus durch Strontiumionen überwiegen.
Die in dieser Dissertation dargestellten Fertigungstechniken zusammen mit der Verbesserung der Materialeigenschaften bieten eine vielfältige Palette zur Herstellung patientenspezifischer Implantate. Dies beinhaltet nicht nur eine individuelle Implantatgeometrie, sondern auch eine Verbesserung der Schadenstoleranz, die Förderung des Knochenwachstums sowie eine lokale Wirkstofffreisetzung. Daher kann diese Arbeit als Grundlage für weitere Forschung im Bereich spezifischer, medizinischer Indikationen dienen.
|
4 |
Modellierung und Simulation der Aushärtung polymerer Werkstoffe / Modelling and simulation of curing processes in polymersLandgraf, Ralf 11 November 2015 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der kontinuumsmechanischen Formulierung des Aushärteverhaltens polymerer Werkstoffe sowie der Implementierung und Simulation von Aushärtestoffgesetzen im Rahmen der Finite-Elemente-Methode. Auf Basis eines allgemeinen Modellierungsrahmens wird ein konkretisiertes Stoffgesetz für die Nachbildung von Aushärteprozessen eines acrylischen Knochenzements entwickelt. Darüber hinaus werden verschiedene Finite-Elemente-Simulationen zum klinischen Verfahren der Vertebroplastie präsentiert. / This work deals with the continuum mechanical formulation of curing phenomena in polymers as well as the implementation and simulation of curing models within the finite element method. Based on a general modelling framework, a specified material model for the simulation of curing processes in an acrylic bone cement is developed. Moreover, different finite element simulations regarding the clinical procedure of vertebroplasty are presented.
|
5 |
Modellierung und Simulation der Aushärtung polymerer WerkstoffeLandgraf, Ralf 20 October 2015 (has links)
Die vorliegende Arbeit befasst sich mit der kontinuumsmechanischen Formulierung des Aushärteverhaltens polymerer Werkstoffe sowie der Implementierung und Simulation von Aushärtestoffgesetzen im Rahmen der Finite-Elemente-Methode. Auf Basis eines allgemeinen Modellierungsrahmens wird ein konkretisiertes Stoffgesetz für die Nachbildung von Aushärteprozessen eines acrylischen Knochenzements entwickelt. Darüber hinaus werden verschiedene Finite-Elemente-Simulationen zum klinischen Verfahren der Vertebroplastie präsentiert. / This work deals with the continuum mechanical formulation of curing phenomena in polymers as well as the implementation and simulation of curing models within the finite element method. Based on a general modelling framework, a specified material model for the simulation of curing processes in an acrylic bone cement is developed. Moreover, different finite element simulations regarding the clinical procedure of vertebroplasty are presented.
|
Page generated in 0.0767 seconds