• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molekulare, biochemische und strukturelle Untersuchungen an amylolytischen Enzymen von Thermotoga maritima MSB8 / Molecular, biochemical and structural analysis of amylolytic enzymes of Thermotoga maritima MSB8

Raasch, Carsten 03 May 2001 (has links)
No description available.
2

Úloha F420H2-závislých reduktas v biosyntéze bioaktivních mikrobiálních metabolitů inkorporujících 4-alkyl-L-prolinový derivát / The role of F₄₂₀H₂-dependent reductases in the biosynthesis of microbial bioactive metabolites incorporating a 4-alkyl-˪-proline derivate

Steiningerová, Lucie January 2020 (has links)
Antitumor pyrrolobenzodiazepines (PBDs), lincosamide antibiotics, quorum sensing molecule hormaomycin, and antituberculotic griselimycin are structurally and functionally diverse groups of actinobacterial metabolites. The common feature of these compounds is the incorporation of L-tyrosine- or L-leucine-derived 4-alkyl-L-proline derivatives (APDs) in their structures. APD biosynthesis involves a set of up to six homologous proteins. According to their proposed order in the biosynthesis of 4-propyl-L-proline, a model APD of lincosamide lincomycin, the homologous proteins were named Apd1 - Apd6. Here, we report that the last reaction in the biosynthetic pathway of APDs, catalyzed by F420H2-dependent Apd6 reductases, contributes to the structural diversity of APD precursors. Specifically, the heterologous overproduction and in vitro tests of six Apd6 enzymes demonstrated that Apd6 from the biosynthesis of PBDs and hormaomycin can reduce only an endocyclic imine double bond, whereas Apd6 LmbY and partially GriH from the biosyntheses of lincomycin and griselimycin, respectively, also reduce the more inert exocyclic double bond of the same 4-substituted Δ1 -pyrroline-2-carboxylic acid substrate, making LmbY and GriH unusual, if not unique, among reductases. The two successive F420H2-dependent reduction...
3

Kinetic behavior of the NAD(P)H:Quinone oxidoreductase WrbA from Escherichia coli. / Kinetic behavior of the NAD(P)H:Quinone oxidoreductase WrbA from Escherichia coli.

KISHKO, Iryna January 2012 (has links)
This Ph.D. thesis addresses the structure-function relationship of the multimeric oxidoreductase WrbA with the principal aim being the explanation of the unusual kinetics of this enzyme in molecular terms, and thus getting an insight about its physiological role in bacteria. WrbA is a multimeric enzyme with FMN as a co-factor, catalyzing the oxidation of NADH by a two electrons transfer. Structure and function analysis of WrbA places this enzyme between bacterial flavodoxins and eukaryotic oxidoreductases in terms of its evolutionary relationship. The kinetic activity of WrbA was studied under varying conditions such as temperature, pH etc, and its kinetic mechanism was evaluated from parameters KM and Vmax and confirmed by product inhibition pattern experiments. Crystallization and proteolytic experiments also underpin the functional importance of the multimeric nature of WrbA and aid the understanding of the physiological role of this enzyme in molecular terms.

Page generated in 0.0393 seconds