Spelling suggestions: "subject:"collagen I"" "subject:"kollagen I""
1 |
In vitro Untersuchungen zur tenogenen Differenzierung von humanen mesenchymalen Stammzellen in Kollagen I-Nanofaserscaffolds für den Sehnenersatz / In vitro studies of tenogenous differentiation of human mesenchymal stem cells in collagen -I-nanofaserscaffolds for the replacement of tendonsBroermann, Ruth January 2013 (has links) (PDF)
Bänder und Sehnen sind bradytrophe Gewebe die eine limitierte intrinsische Heilungskapazität aufweisen. Trotz einer primären Nahtrekonstruktion kann es zur Ausbildung eines mechanisch insuffizienten Narbengewebes kommen. Die Verwendung autologer oder allogener Sehnen-/Bandersatzplastiken bei Vorliegen substantieller Defekte bergen die Gefahr der donor site morbidity und antigener/allergischer Reaktionen.
Besonders das Tissue Engineering kann hier zur Entwicklung innovativer Therapieansätze beitragen. Die Verwendung autologer mesenchymaler Vorläuferzellen und biomimetischer Zellträger zu Generierung eines Sehnen- /Bandersatzes ex vivo ist eine vielversprechende Alternative.
Ziel der vorliegenden Arbeit war die Generierung von biomimetischen Zellträgern auf der Basis von Kollagen Typ I mittels Elektrospinning. Dabei orientierte sich das Scaffolddesign am Aufbau der EZM von nativem Band- und Sehnengewebe. In einem zweiten Schritt wurde die Auswirkung unterschiedlicher Scaffoldarchitektur auf die tenogene Differenzierung von humanen MSZ untersucht. Hierzu wurden MSZ aus dem Knochenmark isoliert, amplifiziert, die Zellträger mit diesen Zellen besiedelt und für einen definierten Zeiträum (21 Tage) kultiviert.
Die Kollagen I-Ausgangskonzentration hatte entscheidenden Einfluss auf den Faserdurchmesser. Wobei unter Verwendung einer 5-8%-igen Kollagenlösung der Faserdurchmesser im Bereich von nativen Kollagenfasern in natürlichem Sehnengewebe erzielt werden konnte. Unter Verwendung eines rotierenden Metallzylinders als Kollektor konnte mit steigender Rotationgeschwindigkeit eine zunehmende parallele Faserausrichtung in den NFS erreicht werden. Ein Einfluss auf die Morphologie und die Proliferation der MSZ auf NFS mit unterschiedlicher Faserdicke zeigte sich nicht. Ausgerichtete Fasern führten zu einer signifikant parallelen Ausrichtung der MSZ mit langgezogenem schlanken Zellkörper, im Unterschied zu einer polygonalen MSZ-Morphologie auf nicht ausgerichteten NF.
Die tenogene Differenzierung der Zellen in den NFS wurde mittels RT-PCR- Analyse untersucht. Hierbei wurde die Expression der tendogenen Markergene Tenascin C, Elastin, Kollagen I und Skleraxis bestimmt. Zusätzlich wurden immunfluoreszens- und histochemische Färbungen durchgeführt, um die Infiltration der Zellen in die Zellträger und den Einfluss unterschiedlicher Faserparameter auf die Morphologie der MSZ nachzuweisen.
Unter Verwendung von ausgerichteten Kollagen I-NFS zeigte sich eine signifikant höhere tenogene Markergenexpression für Skleraxis und Tenascin C in der Frühphase und im weiteren Verlauf ebenfalls für Col I und Elastin im Vergleich zu nicht ausgerichteten NFS.
Elektrospinning von Kollagen I unter Verwendung eines rotierenden Kollektors ermöglicht die Herstellung biomimetischer NFS mit paralleler Faserausrichtung analog zu nativem Sehnengewebe. Die so hergestellten NFS zeichnen sich im Vergleich zu nicht ausgerichteten NFS durch eine signifikant höher mechanische Zugfestigkeit und die Induktion einer tenogenen Markergenexpression in MSZ aus. Prinzipiell haben Kollagen I-NFS das Potential bestehende Therapiestrategien zu Rekonstruktion substantieller Sehnenrupturen im Rahmen Stammzell-basierter Ansätze zu unterstützen. Die generelle Eignung in vivo muss aber zunächst in adäquaten Großtiermodellen (z. B. Rotatorenmanschettendefekt im Schaf) überprüft werden.
Die vorliegende Arbeit zeigt die Bedeutung eines Zielgewebe-gerichteten Designs von Zellträgern für die Entwicklung innovativer Strategien im Tissue Engineering. Bei der Regeneration muskuloskelettaler Gewebe, wie dem Sehnenegewebe, spielen nicht nur strukturelle Aspekte sondern auch die biochemische Zusammensetzung des zu erneuernden Gewebes eine entscheidende Rolle, die bei der Scaffold-Herstellung zu berücksichtigen sind. / In vitro studies of tenogenous differentiation of human mesenchymal stem cells in collagen -I-nanofaserscaffolds for the replacement of tendons
|
2 |
In vitro Untersuchungen zur Rekonstruktion von Meniskusdefekten mit mesenchymalen Stammzellen eingebettet in Polylaktid-Kollagen I-Hydrogelkonstrukten / In vitro examination to reconstruct a meniscus-defect with mesenchymal stem cells combined with a polylactid-collagen I-hydrogel construct.Stüber, Jens Christian January 2007 (has links) (PDF)
Der Meniskus gleicht die Inkongruenz der beiden Gelenkpartner im Kniegelenk aus und führt somit zu einer Reduktion der Knorpelbelastung. Aufgrund der eingeschränkten Selbstheilungsfähigkeit des bradytrophen Meniskusgewebes bleibt bei Verletzung oft nur die operative Teilresektion als Therapie der Wahl. In dieser in vitro Untersuchung erfolgte die Implantation eines mit mesenchymalen (MSZ) Stammzellen beladenem Polylaktid-Kollagen-I-Hydrogel. Die MSZ zeigten eine in der Histologie und PCR nachgewiesene chondrogene Differenzierungspotenz innerhalb des Polylaktidkonstruktes. Innerhalb des Stanzdefektes konnte eine Anhaftung der MSZ an das Meniskusgewebe sowie die Ausbildung einer stabilen Kollagen-I-Matrix gezeigt werden. Die Arbeit stellt die Grundlage für eine spätere tierexperimentelle Studie dar. / The meniscus adjust the different shapes of the femor and Tibia and reduces the load of the articular cartilage. Because of his reduced regeneration rate, the meniscus often has to be partly removed in case of an injury. In this examination a polylactid-collagen I-hydrogel loaded with mesenchymal stem cells (msc) was implanted in the meniscus defect region. A chondral differentiation of the msc in the polylactid-construct was shown in the histology and a pcr-analysis was made. In the defect region the msc showed a near acclomeration to the meniscus tissue and a stable collagen-I-matrix was developed. The results are the base for a further examination in an animal model.
|
3 |
Quantifying adhesive interactions between cells and extracellular matrix by single-cell force spectroscopyTaubenberger, Anna Verena 08 October 2009 (has links) (PDF)
Interactions of cells with their environment regulate important cellular functions and are required for the organization of cells into tissues and complex organisms. These interactions involve different types of adhesion receptors. Interactions with extracellular matrix (ECM) proteins are mainly mediated by the integrin family of adhesion molecules. Situations in which integrin-ECM interactions are deregulated cause diseases and play a crucial role in cancer cell invasion. Thus, the mechanisms underlying integrin-binding and regulation are of high interest, particularly at the molecular level.
How can cell-ECM interactions be studied? While there are several methods to analyze cell adhesion, few provide quantitative data on adhesion forces. One group, single-cell force spectroscopy (SCFS), quantifies adhesion at the single-cell level and can therefore differentiate the adhesive properties of individual cells. One implementation of SCFS is based on atomic force microscopy (AFM); this technique has been employed in the presented work. Advantageously AFM-SCFS combines high temporal and spatial cell manipulation, the ability to measure a large range of adhesion forces and sufficiently high-force resolution to allow the study of single-molecule binding events in the context of a living cell. Since individual adhesion receptors can be analyzed within their physiological environment, AFM-SCFS is a powerful tool to study the mechanisms underlying integrin-regulation.
The presented work is split into six chapters. Chapter one gives background information about cell-ECM interactions. In chapter two, different adhesion assays are compared and contrasted. The theoretical Bell-Evans model which is used to interpret integrin-mediated cell adhesion is discussed in chapter three. Thereafter, the three projects that form the core of the thesis are detailed in chapters four through six.
In the first project (chapter 4), α2β1-integrin mediated cell adhesion to collagen type I, the most abundant structural protein in vertebrates, was quantified using CHO cells. Firstly, α2β1-collagen interactions were investigated at the single-molecule level. Dynamic force spectroscopy permitted calculation of bond specific parameters, such as the bond dissociation rate koff (1.3 ± 1.3 sec-1) and the barrier width xu (2.3 ± 0.3 Å). Next, α2β1-integrin mediated cell adhesion to collagen type I was monitored over contact times between 0 and 600 sec. Thereby the kinetics of α2β1-integrin mediated interactions was explored and insights into the underlying binding mechanisms were gained.
In the second project (chapter five), effects of cryptic integrin binding sites within collagen type I exerted on pre-osteoblasts were investigated. Collagen type I matrices were thermally denatured which lead to exposure of cryptic RGD (Arg-Gly-Asp)-motifs. As a consequence pre-osteoblasts enhanced their adhesion to denatured collagen. Compared to native collagen type I, adhesion to denatured collagen was mediated by a different set of integrins, including αv- and α5β1-integrins. Cells grown on denatured collagen showed enhanced spreading and motility, which correlated with increased focal adhesion kinase phosphorylation levels. Moreover, osteogenic differentiation kinetics and differentiation potential were increased on denatured collagen. The findings of this project open new perspectives for optimization of tissue engineering substrates.
In the third part (chapter six), the effect of the fusion protein BCR/ABL, a hallmark of chronic myeloid leukemia, on adhesion of myeloid progenitor cells was studied. Adhesion between BCR/ABL transformed progenitor cells to bone marrow derived stromal cells and to different ECM proteins was quantitatively compared to that of control cells. The tyrosine kinase activity of BCR/ABL enhanced cell adhesion, which was blocked by imatinib mesylate, a drug interfering with BCR/ABL activity. BCR/ABL-enhanced adhesion correlated with increased β1-integrin cell surface concentrations. Since adhesion of leukemic cells to the bone marrow compartment is critical for the development of drug resistance, the reported results may provide a basis for optimized target therapies.
In the three described projects AFM-based SCFS was applied to investigate early steps of integrin-mediated adhesion at the molecular level. Taken together, the results demonstrate that AFM-SCFS is a versatile tool that permits monitoring of cell adhesion from single-molecule interactions to the formation of more complex adhesion sites at the force level. / Interaktionen zwischen Zellen und ihrer Umgebung sind maßgeblich an der Regulierung zellulärer Funktionen beteiligt und daher notwendig für die Organisation von Zellen in Geweben und komplexen Organismen. Zellinteraktionen mit der extrazellulären Matrix (EZM) werden hauptsächlich durch Integrine vermittelt. Situationen, in denen Integrin- EZM Interaktionen verändert sind, können Krankheiten verursachen und spielen zudem eine wichtige Rolle bei der Invasion von Krebszellen. Daher besteht ein großes Interesse darin, die molekularen Mechanismen, die Integrin-EZM Interaktionen regulieren, besser zu verstehen.
Wie können Zell-EZM Interaktionen untersucht werden? Obwohl es mehrere Methoden gibt, mit denen Zelladhäsion untersucht werden kann, sind die wenigsten dazu geeignet, Zelladhäsionskräfte zu quantifizieren. Einzelzellspektroskopie erfasst die Adhäsionskräfte einzelner Zellen quantitativ und ermöglicht dadurch eine differenzierte Betrachtung der Adhäsion individueller Zellen. Eine Variante der Einzelzellspektroskopie basiert auf der Rasterkraftmikroskopie (AFM); diese Technik wurde in der vorliegenden Arbeit verwendet. Ein Vorteil von AFM- Einzelzellspektroskopie besteht darin, dass Zellen mit hoher zeitlicher und räumlicher Präzision manipuliert werden können. Zelladhäsionskräfte können zudem über einen großen Kraftbereich hinweg untersucht werden. Dabei ermöglicht es die hohe Kraftauflösung, einzelne Integrin-Ligandenbindungen in lebenden Zellen zu untersuchen.
Die vorliegende Arbeit gliedert sich in sechs Kapitel. Kapitel eins gibt Hintergrundinformationen über Zell-EZM Wechselwirkungen. In Kapitel zwei werden verschiedene Adhäsionsassays einander gegenüber gestellt. Das theoretische Bell-Evans Modell, mit dessen Hilfe die gewonnenen Daten interpretiert wurden, wird in Kapitel drei diskutiert. Im Anschluss werden drei Projekte, welche das Herzstück dieser Doktorarbeit bilden, in Kapiteln vier bis sechs näher ausgeführt.
Im ersten Projekt (Kapitel vier) wurde die Adhäsion von α2β1-Integrin exprimierenden CHO Zellen zu Kollagen I, dem häufigsten strukturellen Protein in Wirbeltieren, quantitativ untersucht. Zunächst wurden α2β1-Kollagen-Interaktionen auf Einzelmolekülebene analysiert. Mithilfe der dynamischen Kraftspektroskopie wurden für diese Bindung Dissoziationsrate koff (1.3 ± 1.3 sec-1) und Potentialbarrierenbreite xu (2.3 ± 0.3 Å) bestimmt. Daraufhin wurde die α2β1-vermittelte Adhäsion über einen Zeitraum von zehn Minuten untersucht. Dadurch konnten Einblicke in die Kinetik von α2β1-integrin vermittelter Zelladhäsion sowie in die zugrunde liegenden Regulationsmechanismen gewonnen werden.
Im zweiten Projekt (Kapitel fünf) wurde die Rolle von kryptischen Integrin-Bindungsstellen in Kollagen I untersucht. Die zuvor verwendeten Kollagenoberflächen wurden thermisch denaturiert, wodurch versteckte RGD (Arg-Gly-Asp)-Sequenzen freigelegt wurden. Die partielle Denaturierung hatte- verglichen mit nativem Kollagen I- eine erhöhte Adhäsion von Präosteoblasten (MC3T3-E1) zur Folge, was auf das Binden zusätzlicher Integrine zurückgeführt wurde. Im Unterschied zu nativem Kollagen wurde die Zelladhäsion zu denaturiertem Kollagen I u.a. durch αv- and α5β1-Integrine vermittelt. Präosteoblasten zeigten verstärktes Zellspreiten sowie höhere Motilität auf denaturiertem Kollagen I; zudem wurde ein erhöhtes Differenzierungpotential der Präosteoblasten festgestellt. Die in diesem Projekt erhaltenen Einblicke bilden eine hilfreiche Basis für die Entwicklung optimierter Oberflächen für diverse Zell- und Gewebekulturanwendungen.
Im dritten Projekt (Kapitel sechs) wurde der Einfluss des Fusionproteins BCR/ABL, charakteristisch für chronische myeloische Leukämie, auf die Adhäsion von myeloischen Vorläuferzellen untersucht. Dazu wurde die Adhäsion von BCR/ABL transformierten Vorläuferzellen (32D Zellen) bzw. Kontrollzellen zu Stromazellen (M2-10B4) sowie verschiedenen EZM Proteinen untersucht. BCR/ABL erhöhte die Zelladhäsion der myeloischen Vorläuferzellen signifikant. Dieser Effekt wurde durch die Zugabe von Imatinib, welches die Tyrosinkinaseaktivität von BCR/ABL inhibiert, aufgehoben. Die BCR/ABL-verstärkte Zelladhäsion korrelierte mit erhöhten β1-Integrin-konzentrationen. Da die Adhäsion von Leukämiezellen im Knockenmark bekanntermaßen kritisch für die Entwicklung von Resistenzen gegenüber verschiedenen Wirkstoffen ist, könnten die Ergebnisse dieser Studie eine Grundlage für die Entwicklung optimierter Target-Therapien sein.
In den drei beschriebenen Projekten wurde AFM Einzelzellspektroskopie verwendet, um Integrin- vermittelte Adhäsion auf molekularer Ebene zu untersuchen. Die Ergebnisse zeigen, dass AFM-Einzelzellspektroskopie ein vielseitiges Werkzeug darstellt, das überaus geeignet dazu ist, Zelladhäsion- ausgehend von Einzelmolekülinteraktionen bis hin zur Entstehung komplexerer Adhäsionsstellen- auf der Kraftebene zu verfolgen.
|
4 |
Wirkungsweise von Bisphosphonaten auf die Expression verschiedener Knochenmarker in mesenchymalen Stammzellen der Plazenta / Effects on gene expression of different osteogenic markers in mesenchymal stem cells of human placentaKemper, Götz 26 October 2010 (has links)
No description available.
|
5 |
Quantifying adhesive interactions between cells and extracellular matrix by single-cell force spectroscopyTaubenberger, Anna Verena 07 October 2009 (has links)
Interactions of cells with their environment regulate important cellular functions and are required for the organization of cells into tissues and complex organisms. These interactions involve different types of adhesion receptors. Interactions with extracellular matrix (ECM) proteins are mainly mediated by the integrin family of adhesion molecules. Situations in which integrin-ECM interactions are deregulated cause diseases and play a crucial role in cancer cell invasion. Thus, the mechanisms underlying integrin-binding and regulation are of high interest, particularly at the molecular level.
How can cell-ECM interactions be studied? While there are several methods to analyze cell adhesion, few provide quantitative data on adhesion forces. One group, single-cell force spectroscopy (SCFS), quantifies adhesion at the single-cell level and can therefore differentiate the adhesive properties of individual cells. One implementation of SCFS is based on atomic force microscopy (AFM); this technique has been employed in the presented work. Advantageously AFM-SCFS combines high temporal and spatial cell manipulation, the ability to measure a large range of adhesion forces and sufficiently high-force resolution to allow the study of single-molecule binding events in the context of a living cell. Since individual adhesion receptors can be analyzed within their physiological environment, AFM-SCFS is a powerful tool to study the mechanisms underlying integrin-regulation.
The presented work is split into six chapters. Chapter one gives background information about cell-ECM interactions. In chapter two, different adhesion assays are compared and contrasted. The theoretical Bell-Evans model which is used to interpret integrin-mediated cell adhesion is discussed in chapter three. Thereafter, the three projects that form the core of the thesis are detailed in chapters four through six.
In the first project (chapter 4), α2β1-integrin mediated cell adhesion to collagen type I, the most abundant structural protein in vertebrates, was quantified using CHO cells. Firstly, α2β1-collagen interactions were investigated at the single-molecule level. Dynamic force spectroscopy permitted calculation of bond specific parameters, such as the bond dissociation rate koff (1.3 ± 1.3 sec-1) and the barrier width xu (2.3 ± 0.3 Å). Next, α2β1-integrin mediated cell adhesion to collagen type I was monitored over contact times between 0 and 600 sec. Thereby the kinetics of α2β1-integrin mediated interactions was explored and insights into the underlying binding mechanisms were gained.
In the second project (chapter five), effects of cryptic integrin binding sites within collagen type I exerted on pre-osteoblasts were investigated. Collagen type I matrices were thermally denatured which lead to exposure of cryptic RGD (Arg-Gly-Asp)-motifs. As a consequence pre-osteoblasts enhanced their adhesion to denatured collagen. Compared to native collagen type I, adhesion to denatured collagen was mediated by a different set of integrins, including αv- and α5β1-integrins. Cells grown on denatured collagen showed enhanced spreading and motility, which correlated with increased focal adhesion kinase phosphorylation levels. Moreover, osteogenic differentiation kinetics and differentiation potential were increased on denatured collagen. The findings of this project open new perspectives for optimization of tissue engineering substrates.
In the third part (chapter six), the effect of the fusion protein BCR/ABL, a hallmark of chronic myeloid leukemia, on adhesion of myeloid progenitor cells was studied. Adhesion between BCR/ABL transformed progenitor cells to bone marrow derived stromal cells and to different ECM proteins was quantitatively compared to that of control cells. The tyrosine kinase activity of BCR/ABL enhanced cell adhesion, which was blocked by imatinib mesylate, a drug interfering with BCR/ABL activity. BCR/ABL-enhanced adhesion correlated with increased β1-integrin cell surface concentrations. Since adhesion of leukemic cells to the bone marrow compartment is critical for the development of drug resistance, the reported results may provide a basis for optimized target therapies.
In the three described projects AFM-based SCFS was applied to investigate early steps of integrin-mediated adhesion at the molecular level. Taken together, the results demonstrate that AFM-SCFS is a versatile tool that permits monitoring of cell adhesion from single-molecule interactions to the formation of more complex adhesion sites at the force level. / Interaktionen zwischen Zellen und ihrer Umgebung sind maßgeblich an der Regulierung zellulärer Funktionen beteiligt und daher notwendig für die Organisation von Zellen in Geweben und komplexen Organismen. Zellinteraktionen mit der extrazellulären Matrix (EZM) werden hauptsächlich durch Integrine vermittelt. Situationen, in denen Integrin- EZM Interaktionen verändert sind, können Krankheiten verursachen und spielen zudem eine wichtige Rolle bei der Invasion von Krebszellen. Daher besteht ein großes Interesse darin, die molekularen Mechanismen, die Integrin-EZM Interaktionen regulieren, besser zu verstehen.
Wie können Zell-EZM Interaktionen untersucht werden? Obwohl es mehrere Methoden gibt, mit denen Zelladhäsion untersucht werden kann, sind die wenigsten dazu geeignet, Zelladhäsionskräfte zu quantifizieren. Einzelzellspektroskopie erfasst die Adhäsionskräfte einzelner Zellen quantitativ und ermöglicht dadurch eine differenzierte Betrachtung der Adhäsion individueller Zellen. Eine Variante der Einzelzellspektroskopie basiert auf der Rasterkraftmikroskopie (AFM); diese Technik wurde in der vorliegenden Arbeit verwendet. Ein Vorteil von AFM- Einzelzellspektroskopie besteht darin, dass Zellen mit hoher zeitlicher und räumlicher Präzision manipuliert werden können. Zelladhäsionskräfte können zudem über einen großen Kraftbereich hinweg untersucht werden. Dabei ermöglicht es die hohe Kraftauflösung, einzelne Integrin-Ligandenbindungen in lebenden Zellen zu untersuchen.
Die vorliegende Arbeit gliedert sich in sechs Kapitel. Kapitel eins gibt Hintergrundinformationen über Zell-EZM Wechselwirkungen. In Kapitel zwei werden verschiedene Adhäsionsassays einander gegenüber gestellt. Das theoretische Bell-Evans Modell, mit dessen Hilfe die gewonnenen Daten interpretiert wurden, wird in Kapitel drei diskutiert. Im Anschluss werden drei Projekte, welche das Herzstück dieser Doktorarbeit bilden, in Kapiteln vier bis sechs näher ausgeführt.
Im ersten Projekt (Kapitel vier) wurde die Adhäsion von α2β1-Integrin exprimierenden CHO Zellen zu Kollagen I, dem häufigsten strukturellen Protein in Wirbeltieren, quantitativ untersucht. Zunächst wurden α2β1-Kollagen-Interaktionen auf Einzelmolekülebene analysiert. Mithilfe der dynamischen Kraftspektroskopie wurden für diese Bindung Dissoziationsrate koff (1.3 ± 1.3 sec-1) und Potentialbarrierenbreite xu (2.3 ± 0.3 Å) bestimmt. Daraufhin wurde die α2β1-vermittelte Adhäsion über einen Zeitraum von zehn Minuten untersucht. Dadurch konnten Einblicke in die Kinetik von α2β1-integrin vermittelter Zelladhäsion sowie in die zugrunde liegenden Regulationsmechanismen gewonnen werden.
Im zweiten Projekt (Kapitel fünf) wurde die Rolle von kryptischen Integrin-Bindungsstellen in Kollagen I untersucht. Die zuvor verwendeten Kollagenoberflächen wurden thermisch denaturiert, wodurch versteckte RGD (Arg-Gly-Asp)-Sequenzen freigelegt wurden. Die partielle Denaturierung hatte- verglichen mit nativem Kollagen I- eine erhöhte Adhäsion von Präosteoblasten (MC3T3-E1) zur Folge, was auf das Binden zusätzlicher Integrine zurückgeführt wurde. Im Unterschied zu nativem Kollagen wurde die Zelladhäsion zu denaturiertem Kollagen I u.a. durch αv- and α5β1-Integrine vermittelt. Präosteoblasten zeigten verstärktes Zellspreiten sowie höhere Motilität auf denaturiertem Kollagen I; zudem wurde ein erhöhtes Differenzierungpotential der Präosteoblasten festgestellt. Die in diesem Projekt erhaltenen Einblicke bilden eine hilfreiche Basis für die Entwicklung optimierter Oberflächen für diverse Zell- und Gewebekulturanwendungen.
Im dritten Projekt (Kapitel sechs) wurde der Einfluss des Fusionproteins BCR/ABL, charakteristisch für chronische myeloische Leukämie, auf die Adhäsion von myeloischen Vorläuferzellen untersucht. Dazu wurde die Adhäsion von BCR/ABL transformierten Vorläuferzellen (32D Zellen) bzw. Kontrollzellen zu Stromazellen (M2-10B4) sowie verschiedenen EZM Proteinen untersucht. BCR/ABL erhöhte die Zelladhäsion der myeloischen Vorläuferzellen signifikant. Dieser Effekt wurde durch die Zugabe von Imatinib, welches die Tyrosinkinaseaktivität von BCR/ABL inhibiert, aufgehoben. Die BCR/ABL-verstärkte Zelladhäsion korrelierte mit erhöhten β1-Integrin-konzentrationen. Da die Adhäsion von Leukämiezellen im Knockenmark bekanntermaßen kritisch für die Entwicklung von Resistenzen gegenüber verschiedenen Wirkstoffen ist, könnten die Ergebnisse dieser Studie eine Grundlage für die Entwicklung optimierter Target-Therapien sein.
In den drei beschriebenen Projekten wurde AFM Einzelzellspektroskopie verwendet, um Integrin- vermittelte Adhäsion auf molekularer Ebene zu untersuchen. Die Ergebnisse zeigen, dass AFM-Einzelzellspektroskopie ein vielseitiges Werkzeug darstellt, das überaus geeignet dazu ist, Zelladhäsion- ausgehend von Einzelmolekülinteraktionen bis hin zur Entstehung komplexerer Adhäsionsstellen- auf der Kraftebene zu verfolgen.
|
Page generated in 0.049 seconds