• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 13
  • 6
  • Tagged with
  • 33
  • 33
  • 29
  • 28
  • 26
  • 23
  • 15
  • 14
  • 14
  • 14
  • 12
  • 12
  • 10
  • 9
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tissue Engineering eines dreidimensionalen Herzgewebes unter Einsatz von Mesenchymalen Stammzellen und histologische Untersuchung des Gewebes auf Integration und Zelldifferenzierung in einem In-vivo-Rattenmodel

Spath, Cathleen 16 December 2015 (has links) (PDF)
Am Herzzentrum Leipzig konnte bereits unter Einsatz von neonatalen Kardiomyozyten ein dreidimensionales vaskularisiertes Engineered Heart Tissue (EHT) etabliert und in Rat- ten mit dilatativer Kardiomyopathie implantiert werden. In Hinblick auf einen möglichen klinischen Einsatz zur Behandlung von fortgeschrittenen kardialen Erkrankungen ist es notwendig die neonatalen Kardiomyozyten der etablierten EHTs durch eine alternative Zellsorte zu ersetzen. In der vorliegenden Arbeit wurden mesenchymale Stammzellen (MSCs) aus dem Kno- chenmark der Ratte verwendet, da sie autolog aus fast jedem Körpergewebe gewonnen werden können und somit ethisch und immunologisch unbedenklich sind. Es ist gelungen formstabile, transplantationsfähige Engineered Tissues sowohl aus selbst isolierten MSCs (sMSC-ET) als auch aus kommerziell erworbenen MSCs (cMSC-ET) herzustellen. Bereits in vitro hatten sich in den künstlich hergestellten sMSC-ETs und cMSC-ETs Mikrogefäße entwickelt. Nach Implantation der MSC-ETs um ein Rattenherz verbesserte sich deren Vas- kularisierung signifikant. Zusätzlich konnte in vivo eine De-novo-Synthese von elastischen Fasern als Zeichen eines Anpassungsprozesses nachgewiesen werden. Das Hauptziel dieser Arbeit, nämlich die kardiale Differenzierung der MSCs, wurde jedoch verfehlt. Entspre- chend diesem Ergebnis steht bis heute ein endgültiger Beweis aus, ob MSCs fähig sind sich in funktionelle echte Kardiomyozyten zu differenzieren. Überdies entwickelte sich aus einem der drei implantierten cMSC-ETs ein hochmalignes undifferenziertes pleomorphes Sarkom, welches infiltrierend in das Rattenherz einwuchs. Diese Beobachtung wurde nicht für sMSC-ETs gemacht. Bei der histologischen Analyse des pleomorphen Sarkoms zeigte sich, dass dieses keine gewebespezifischen Connexine an Stellen des invasiven Wachstums exprimierte und nahezu keine am Übergang vom Tumor- zum Herzgewebe. Gleichwohl bestand zwischen proliferativer Aktivität und Connexin- Expression eine negative Korrelation. Diese Beobachtungen unterstützen zwei bekannte Theorien. Zum einen könnte das invasive Wachstum von Tumoren durch eine gestörte bzw. fehlende Kommunikation von Gap-Junction-Kanälen zwischen Tumor- und gesunden Gewebe ermöglicht worden sein. Zum anderen könnten Connexine ihrerseits über zellge- bundene molekulare Wechselwirkungen die Tumorprogression beeinträchtigen. Zusammenfassend lässt sich feststellen, dass MSCs nicht für die Herstellung von artifi- ziellem Herzgewebe geeignet sind, wohl aber für die Herstellung von künstlichen Blutge- fäßsystemen. Als sinnvolle Zellalternative bieten sich induzierte pluripotente Stammzellen (IPS-Zellen) an, da deren Differenzierbarkeit zu funktionellen Kardiomyozyten glaubhaft bewiesen werden konnte. Auch IPS-Zellen bergen ein onkogenes Potential. Daher gilt es einheitliche Kontrollen und Sicherheitsmessungen in der Herstellung von pluripotenten wie auch multipotenten Stammzellen für zellbasierte Therapien zu entwickeln und verpflichtend einzuführen.
2

Einfluss von humanen mesenchymalen Stammzellen und deren extrazellulärer Vesikel auf die Leberzellschädigung und -regeneration nach Ischämie-Reperfusionsschaden im Mausmodell / The effect of mesenchymal stem cells and stem cell-derived extracellular vesicles on liver cell damage and regeneration in a murine hepatic ischemia-reperfusion modell

Ellinger, Elisabeth January 2021 (has links) (PDF)
Der hepatische Ischämie-Reperfusionsschaden stellt ein großes Problem in der Transplantations- und Leberchirurgie dar: Insbesondere durch Fibrose, Steatose oder Entzündungsprozesse vorgeschädigte Organe zeigen eine erhöhte Vulnerabilität für den Reperfusionsschaden. Protektive Effekte einer Therapie mit mesenchymalen Stammzellen konnten bereits in Vorversuchen gezeigt werden. Ein direkter Vergleich mit den morphologisch sehr ähnlichen Fibroblasten wurde bisher nicht durchgeführt. Diese Wirkung scheint nach aktuellem Forschungsstand nicht durch zellgebundene, sondern parakrine Effekte vermittelt zu werden. Eine präemptive Injektion von Extrazellulärvesikel aus dem Überstand von Zellkulturen zeigte ähnliche Effekte wie eine Therapie mit Stammzellen. Das in dieser Arbeit durchgeführte Tierversuchsmodell basiert auf einer chirurgisch induzierten 70% Ischämie der Mausleber mit präemptiver Injektion von mesenchymalen Stammzellen, Fibroblasten, sowie deren jeweilige Extrazellulärvesikel. Eine präemptive Therapie mit mesenchymalen Stammzellen und deren Extrazellulärvesikeln verringerte den Leberzellschaden, gemessen anhand der Serumtransaminasenspiegel und Ausprägung der Nekrosefläche innerhalb Ischämie-exponierter Leberabschnitte, und konnte die Leberzellregeneration durch vermehrte Ausbildung von Lipid-Microdroplets und erhöhte Zellproliferationsraten der Hepatozyten bis in die Spätphase des Ischämie-Reperfusionsschadens beschleunigen. In Tieren mit einer präemptiven Injektion von Fibroblasten und deren Extrazellulärvesikel konnten diese Effekte nicht nachgewiesen werden. Es konnte kein Unterschied zwischen einer Therapie mit mesenchymalen Stammzellen und deren Extrazellulärvesikeln festgestellt werden. / Hepatic ischemia reperfusion damage remains a major obstacle in liver transplantation surgery and liver resection: Especially organs damaged by fibrosis, steatosis or inflammatory processes show an increased vulnerability to reperfusion damage. Protective effects of mesenchymal stem cells have already been reported. A direct comparison with fibroblasts, which show many morphological similarities to mesenchymal stem cells, has not yet been carried out. The protective potential of these cells does not seem to be mediated by cell bound, but paracrine effects. A preemptive injection of extracellular vesicles from the supernatant of cell cultures showed similar effects to an injection of stem cells. The animal model carried out in this work is based on a surgically induced 70% ischemia of the mouse liver with preemptive injection of mesenchymal stem cells, fibroblasts, as well as their extracellular vesicles. Preemptive therapy with mesenchymal stem cells and their extracellular vesicles reduced liver cell damage, as measured by serum transaminase levels and expression of the necrosis area within ischemia-exposed liver sections. It also accelerated liver cell regeneration through increased formation of lipid microdroplets and increased cell proliferation rates of hepatocytes into the late phase of ischemia reperfusion damage. In animals with a preemptive injection of fibroblasts and their extracellular vesicles these effects could not be demonstrated. No difference was found between mesenchymal stem cell therapy and their extracellular vesicles, supporting the hypothesis, that the effects of mesenchymal stem cell injection result from a paracrine effect.
3

In vitro Untersuchungen zur Rekonstruktion von Meniskusdefekten mit mesenchymalen Stammzellen eingebettet in Polylaktid-Kollagen I-Hydrogelkonstrukten / In vitro examination to reconstruct a meniscus-defect with mesenchymal stem cells combined with a polylactid-collagen I-hydrogel construct.

Stüber, Jens Christian January 2007 (has links) (PDF)
Der Meniskus gleicht die Inkongruenz der beiden Gelenkpartner im Kniegelenk aus und führt somit zu einer Reduktion der Knorpelbelastung. Aufgrund der eingeschränkten Selbstheilungsfähigkeit des bradytrophen Meniskusgewebes bleibt bei Verletzung oft nur die operative Teilresektion als Therapie der Wahl. In dieser in vitro Untersuchung erfolgte die Implantation eines mit mesenchymalen (MSZ) Stammzellen beladenem Polylaktid-Kollagen-I-Hydrogel. Die MSZ zeigten eine in der Histologie und PCR nachgewiesene chondrogene Differenzierungspotenz innerhalb des Polylaktidkonstruktes. Innerhalb des Stanzdefektes konnte eine Anhaftung der MSZ an das Meniskusgewebe sowie die Ausbildung einer stabilen Kollagen-I-Matrix gezeigt werden. Die Arbeit stellt die Grundlage für eine spätere tierexperimentelle Studie dar. / The meniscus adjust the different shapes of the femor and Tibia and reduces the load of the articular cartilage. Because of his reduced regeneration rate, the meniscus often has to be partly removed in case of an injury. In this examination a polylactid-collagen I-hydrogel loaded with mesenchymal stem cells (msc) was implanted in the meniscus defect region. A chondral differentiation of the msc in the polylactid-construct was shown in the histology and a pcr-analysis was made. In the defect region the msc showed a near acclomeration to the meniscus tissue and a stable collagen-I-matrix was developed. The results are the base for a further examination in an animal model.
4

Untersuchung der Chondrogenese verkapselter humaner Stammzellen und deren Abschirmung vor dem Immunsystem in Mäusen

Lichtenberg, David 21 November 2013 (has links) (PDF)
Mesenchymale Stammzellen bieten eine interessante Option in der regenerativen Medizin, da sie praktisch unlimitiert verfügbar sind. Um das Verhalten von humanen MSC zu studieren, werden Untersuchungen momentan an immundefizienten Mäusen durchgeführt, deren Verwendung kostenintensiv und aufwendig ist. Fra-gestellung war, ob durch Immunisolation (Alginat, Dialyseschlauch, Diffusionskammer) die Knorpel erhaltenden -, bzw. bildenden Eigenschaften von MSC-Konstrukten ebenso gut in immunkompetenten Mäusen untersucht werden können. Gleichzeitig sollte geprüft werden, ob die mit einer Immunabschirmung einhergehende Reduktion der Zellversorgung und damit die Annäherung an die Gelenksituation ihre Mineralisierung vermindern kann und ob Mauszellen für eine Veränderung der vordifferenzierten Knorpelpellets verantwortlich sind. Hierzu wurden hBMSC chondrogen differenziert. Die Zellpellets wurden mit Alginat, dem Dialyseschlauch oder der Diffusionskammer verkapselt und parallel zu unver-kapselten Kontrollpellets subkutan in immundefiziente SCID-Mäuse sowie in immunkompetente BDF1-Mäuse implantiert. Die Explantate wurden mit Alzianblau-, Alizarinrot-, Kollagen Typ II-Färbungen, sowie einer ALU in-situ Hybridisierung mar-kiert und mittels Histologiescore doppelt blind bewertet (MannWhitneyU). Überra-schenderweise zeigten die unverkapselten Kontrollen in den BDF1-Mäusen weder Zeichen von Inflammation noch von Destruktion und 4/5 der Pellets waren auf Kol-lagen Typ-II und Alzianblau positiv. Gleichzeitig war der Grad der Mineralisierung in den BDF1-Mäusen gegenüber SCID-Mäusen reduziert (p = 0,03). Durch Alginat wurde die Mineralisierung in den BDF1 Mäusen (0/8) völlig verhindert, während in den SCID-Mäusen noch 7/8 der Pellets Kalzifizierung zeigten (p = 0,001). Die Verkapselung mit Alginat verglichen mit der Kontrolle führte in beiden Mausstämmen zu höheren Scores für Kollagen Typ II (SCID: p = 0,013, BDF1: p = 0,042) und zeigte gleichzeitig eine Reduktion der Mineralisierung (SCID: p = 0,018, BDF1: p = 0,031). In SCID-Mäusen war außerdem der Alzianblau-Wert gegenüber den Kontrollen erhöht (p = 0,003). Die Diffusionskammer erwies sich als ungeeignet, da die Pellets ihre knorpeligen Eigenschaften verloren. Durch die Verwendung des Dialyseschlauches konnte lediglich in der SCID-Maus eine Erhöhung der Kollagen Typ II (p = 0,03) und eine Reduktion der Kalzifizierung (p = 0,004) erreicht werden. Sowohl im Alginatbead in der BDF1-Maus (1/3 Spendern), als auch im Dialyseschlauch mit Kollagenmembran (2/3 Spendern) konnte eine erfolgreiche in vivo Chondrogenese durchgeführt werden. Zur Untersuchung der in vivo Stabilität knorpeliger MSC-basierter Konstrukte stellt die BDF1-Maus eine attraktive, kostengünstige Alternative mit einer gegenüber der SCID-Maus verringerten Mineralisierungsrate dar. Die in vitro gebildete knorpelige Extrazellulärmatrix erzeugt dabei bereits eine Immunisolation, welche die Transplantatdestruktion verhindert. Ob ein intaktes lymphozytäres System die Knorpelstabilität gegenüber defizienten Immunsystemen begünstigt, muss durch die Untersuchung weiterer Ansätze belegt werden. Im Gegensatz zur Diffusionskammer bietet Alginat das richtige Maß an Versorgungsreduktion, um die Stabilisierung des Knorpelphänotyps der Konstrukte zu ermöglichen.
5

Untersuchungen zur therapeutischen Anwendung mesenchymaler Stammzellen bei chronischen Lebererkrankungen am Beispiel der Nicht-alkoholischen Steatohepatitis

Winkler, Sandra 13 January 2015 (has links) (PDF)
Die Nicht-alkoholische Steatohepatitis (NASH), gehörig zu der Gruppe der chronischen Lebererkrankungen als eine schwere Form der Nicht-alkoholischen Fettleber-erkrankungen (NAFLD), nimmt in ihrer Prävalenz ständig zu. Gründe dafür sind u.a. eine gesteigerte Nahrungsaufnahme sowie Veränderungen der Nahrungszusammen-setzung. Es kommt zur Ausbildung einer Steatose, die sich unter Mitwirkung verschie-dener Einflussfaktoren zur Steatohepatitis weiterentwickeln kann, wobei die Pathoge-nese noch nicht genau verstanden ist. Die Nicht-alkoholische Steatohepatitis geht oft einher mit Insulinresistenz und starkem Übergewicht. Die Folgen für die Leber sind Funktionseinschränkungen und –verlust, hervorgerufen durch eine massive Akkumula-tion von Triglyzeriden in den Hepatozyten, Entzündungsprozesse sowie einem fibro-tischen Umbau der Leber. Im fortgeschritten Stadium wird eine Lebertransplantation unausweichlich, die jedoch aufgrund des zunehmenden Mangels an Spenderorganen oft nicht möglich ist. Eine Alternative bietet die Transplantation mesenchymaler Stammzellen (MSC). MSC können in vitro in leberzellähnliche Zellen differenziert wer-den und weisen dabei essentielle hepatozytäre Eigenschaften auf, wodurch sie als möglicher Ersatz bzw. als Überbrückungstherapie bis zur Lebertransplantation in Frage kommen. Die vorliegende Arbeit beschäftigte sich mit dieser Fragestellung. Dazu wur-de ein Tiermodell der NASH mittels Methionin-Cholin-defizienter Diät (MCD-Diät) etab-liert und die Transplantation von hepatozytär differenzierten MSC durchgeführt. An-hand spezifischer zellulärer und biochemischer Marker der NASH konnte die Wirkung des Zelltransplantats auf die Empfängerleber analysiert werden. Es hat sich gezeigt, dass die MSC einen anti-inflammatorischen, anti-fibrotischen und pro-proliferativen Einfluss auf das Empfängerparenchym hatten und somit zur Verbesserung der Symptomatik der NASH beitrugen.
6

Tissue Engineering eines dreidimensionalen Herzgewebes unter Einsatz von Mesenchymalen Stammzellen und histologische Untersuchung des Gewebes auf Integration und Zelldifferenzierung in einem In-vivo-Rattenmodel

Spath, Cathleen 27 October 2015 (has links)
Am Herzzentrum Leipzig konnte bereits unter Einsatz von neonatalen Kardiomyozyten ein dreidimensionales vaskularisiertes Engineered Heart Tissue (EHT) etabliert und in Rat- ten mit dilatativer Kardiomyopathie implantiert werden. In Hinblick auf einen möglichen klinischen Einsatz zur Behandlung von fortgeschrittenen kardialen Erkrankungen ist es notwendig die neonatalen Kardiomyozyten der etablierten EHTs durch eine alternative Zellsorte zu ersetzen. In der vorliegenden Arbeit wurden mesenchymale Stammzellen (MSCs) aus dem Kno- chenmark der Ratte verwendet, da sie autolog aus fast jedem Körpergewebe gewonnen werden können und somit ethisch und immunologisch unbedenklich sind. Es ist gelungen formstabile, transplantationsfähige Engineered Tissues sowohl aus selbst isolierten MSCs (sMSC-ET) als auch aus kommerziell erworbenen MSCs (cMSC-ET) herzustellen. Bereits in vitro hatten sich in den künstlich hergestellten sMSC-ETs und cMSC-ETs Mikrogefäße entwickelt. Nach Implantation der MSC-ETs um ein Rattenherz verbesserte sich deren Vas- kularisierung signifikant. Zusätzlich konnte in vivo eine De-novo-Synthese von elastischen Fasern als Zeichen eines Anpassungsprozesses nachgewiesen werden. Das Hauptziel dieser Arbeit, nämlich die kardiale Differenzierung der MSCs, wurde jedoch verfehlt. Entspre- chend diesem Ergebnis steht bis heute ein endgültiger Beweis aus, ob MSCs fähig sind sich in funktionelle echte Kardiomyozyten zu differenzieren. Überdies entwickelte sich aus einem der drei implantierten cMSC-ETs ein hochmalignes undifferenziertes pleomorphes Sarkom, welches infiltrierend in das Rattenherz einwuchs. Diese Beobachtung wurde nicht für sMSC-ETs gemacht. Bei der histologischen Analyse des pleomorphen Sarkoms zeigte sich, dass dieses keine gewebespezifischen Connexine an Stellen des invasiven Wachstums exprimierte und nahezu keine am Übergang vom Tumor- zum Herzgewebe. Gleichwohl bestand zwischen proliferativer Aktivität und Connexin- Expression eine negative Korrelation. Diese Beobachtungen unterstützen zwei bekannte Theorien. Zum einen könnte das invasive Wachstum von Tumoren durch eine gestörte bzw. fehlende Kommunikation von Gap-Junction-Kanälen zwischen Tumor- und gesunden Gewebe ermöglicht worden sein. Zum anderen könnten Connexine ihrerseits über zellge- bundene molekulare Wechselwirkungen die Tumorprogression beeinträchtigen. Zusammenfassend lässt sich feststellen, dass MSCs nicht für die Herstellung von artifi- ziellem Herzgewebe geeignet sind, wohl aber für die Herstellung von künstlichen Blutge- fäßsystemen. Als sinnvolle Zellalternative bieten sich induzierte pluripotente Stammzellen (IPS-Zellen) an, da deren Differenzierbarkeit zu funktionellen Kardiomyozyten glaubhaft bewiesen werden konnte. Auch IPS-Zellen bergen ein onkogenes Potential. Daher gilt es einheitliche Kontrollen und Sicherheitsmessungen in der Herstellung von pluripotenten wie auch multipotenten Stammzellen für zellbasierte Therapien zu entwickeln und verpflichtend einzuführen.
7

Biologische Charakterisierung neuartiger nanokristalliner Calciumphosphatzemente für die Knochenregeneration

Vater, Corina 10 June 2010 (has links) (PDF)
Ziel der vorliegenden Arbeit war die biologische Charakterisierung neuartiger nanostrukturierter und für die Knochenregeneration geeigneter Calciumphosphatzemente (CPC). Hierzu wurde ein aus α-Tricalciumphosphat, Calciumhydrogenphosphat, gefälltem Hydroxylapatit und Calciumcarbonat bestehender CPC verwendet, der mit den Biomolekülen Cocarboxylase, Glucuronsäure, Weinsäure, Glucose-1-phosphat, Arginin, Lysin und Asparaginsäure-Natriumsalz modifiziert wurde. Ermittelt wurde dabei der Einfluss der Modifikationen auf die Proteinadsorption und die Biokompatibilität. In Vorversuchen wurden die Zementmodifikationen hinsichtlich ihrer Bindungskapazität für humane Serumproteine und für das knochenspezifische Protein Osteocalcin (OC) sowie hinsichtlich ihrer Eignung für die Adhäsion, Proliferation und osteogene Differenzierung von humanen fötalen Osteoblasten (hFOB 1.19) und humanen mesenchymalen Stammzellen (hMSC) untersucht. Dabei erwiesen sich die Modifikationen mit Cocarboxylase, Arginin und Asparaginsäure-Natriumsalz als besonders günstig. Mit diesen „Favoriten“ erfolgte eine detailliertere Analyse der Adsorption humaner und boviner Serumproteine sowie der knochen-spezifischen Proteine Osteocalcin, BMP-2 und VEGF. Dabei führte sowohl der Zusatz von Cocarboxylase, als auch der von Arginin und Asparaginsäure-Natriumsalz zu einer erhöhten Adsorption von Serumproteinen. Die Bindungsaffinität des Basiszements gegenüber Osteocalcin, BMP-2 und VEGF konnte durch Funktionalisierung mit Arginin gesteigert werden. Während die Modifizierung mit Cocarboxylase nur die VEGF-Adsorption förderte, bewirkte der Zusatz von Asparaginsäure-Natriumsalz eine Erhöhung der Osteocalcin- und BMP-2-Adsorption. Bedingt durch die größere spezifische Oberfläche der noch nicht abgebundenen Zemente, war die Menge adsorbierter Proteine auf frisch hergestellten Zementproben im Vergleich zu abgebundenen und ausgehärteten Zementen signifikant höher. Die Eignung der ausgewählten Zementvarianten als Knochenersatzmaterialien wurde mithilfe humaner mesenchymaler Stammzellen zweier verschiedener Spender getestet. Bei Verwendung abgebundener und ausgehärteter Zemente waren die hMSC in der Lage, auf allen Modifikationen zu adhärieren, zu proliferieren und in die osteogene Richtung zu differenzieren. Eine vorherige Inkubation der Zementproben mit humanem Serum förderte dabei vor allem die Zelladhäsion. Weiterhin konnte gezeigt werden, dass hMSC im Gegensatz zu anderen Studien auch auf frisch hergestellten Zementproben adhärieren, proliferieren und differenzieren können. Die Modifizierung des Basiszements mit Cocarboxylase führte hierbei zu einer gegenüber den anderen Modifikationen signifikant erhöhten Zelladhäsion und -vitalität. Neben den verschieden modifizierten Pulver/Flüssigkeitszementen wurden im Rahmen dieser Arbeit neuartige ready-to-use Zementpasten untersucht. Diese zeigten allerdings im Vergleich zu den herkömmlichen Zementen eine geringere Proteinbindungsaffinität. HMSC, die auf den Pastenzementen kultiviert wurden, war es wiederum möglich zu adhärieren, zu proliferieren und den osteoblastenspezifischen Marker Alkalische Phosphatase zu exprimieren. Hinsichtlich ihrer Biokompatibilität sind sie damit vergleichbar zu den herkömmlichen Pulver/Flüssigkeitszementen.
8

Untersuchungen zur therapeutischen Anwendung mesenchymaler Stammzellen bei chronischen Lebererkrankungen am Beispiel der Nicht-alkoholischen Steatohepatitis

Winkler, Sandra 25 November 2014 (has links)
Die Nicht-alkoholische Steatohepatitis (NASH), gehörig zu der Gruppe der chronischen Lebererkrankungen als eine schwere Form der Nicht-alkoholischen Fettleber-erkrankungen (NAFLD), nimmt in ihrer Prävalenz ständig zu. Gründe dafür sind u.a. eine gesteigerte Nahrungsaufnahme sowie Veränderungen der Nahrungszusammen-setzung. Es kommt zur Ausbildung einer Steatose, die sich unter Mitwirkung verschie-dener Einflussfaktoren zur Steatohepatitis weiterentwickeln kann, wobei die Pathoge-nese noch nicht genau verstanden ist. Die Nicht-alkoholische Steatohepatitis geht oft einher mit Insulinresistenz und starkem Übergewicht. Die Folgen für die Leber sind Funktionseinschränkungen und –verlust, hervorgerufen durch eine massive Akkumula-tion von Triglyzeriden in den Hepatozyten, Entzündungsprozesse sowie einem fibro-tischen Umbau der Leber. Im fortgeschritten Stadium wird eine Lebertransplantation unausweichlich, die jedoch aufgrund des zunehmenden Mangels an Spenderorganen oft nicht möglich ist. Eine Alternative bietet die Transplantation mesenchymaler Stammzellen (MSC). MSC können in vitro in leberzellähnliche Zellen differenziert wer-den und weisen dabei essentielle hepatozytäre Eigenschaften auf, wodurch sie als möglicher Ersatz bzw. als Überbrückungstherapie bis zur Lebertransplantation in Frage kommen. Die vorliegende Arbeit beschäftigte sich mit dieser Fragestellung. Dazu wur-de ein Tiermodell der NASH mittels Methionin-Cholin-defizienter Diät (MCD-Diät) etab-liert und die Transplantation von hepatozytär differenzierten MSC durchgeführt. An-hand spezifischer zellulärer und biochemischer Marker der NASH konnte die Wirkung des Zelltransplantats auf die Empfängerleber analysiert werden. Es hat sich gezeigt, dass die MSC einen anti-inflammatorischen, anti-fibrotischen und pro-proliferativen Einfluss auf das Empfängerparenchym hatten und somit zur Verbesserung der Symptomatik der NASH beitrugen.
9

Untersuchung der Chondrogenese verkapselter humaner Stammzellen und deren Abschirmung vor dem Immunsystem in Mäusen: Untersuchung der Chondrogenese verkapselter humaner Stammzellen und deren Abschirmung vor dem Immunsystem in Mäusen

Lichtenberg, David 12 October 2013 (has links)
Mesenchymale Stammzellen bieten eine interessante Option in der regenerativen Medizin, da sie praktisch unlimitiert verfügbar sind. Um das Verhalten von humanen MSC zu studieren, werden Untersuchungen momentan an immundefizienten Mäusen durchgeführt, deren Verwendung kostenintensiv und aufwendig ist. Fra-gestellung war, ob durch Immunisolation (Alginat, Dialyseschlauch, Diffusionskammer) die Knorpel erhaltenden -, bzw. bildenden Eigenschaften von MSC-Konstrukten ebenso gut in immunkompetenten Mäusen untersucht werden können. Gleichzeitig sollte geprüft werden, ob die mit einer Immunabschirmung einhergehende Reduktion der Zellversorgung und damit die Annäherung an die Gelenksituation ihre Mineralisierung vermindern kann und ob Mauszellen für eine Veränderung der vordifferenzierten Knorpelpellets verantwortlich sind. Hierzu wurden hBMSC chondrogen differenziert. Die Zellpellets wurden mit Alginat, dem Dialyseschlauch oder der Diffusionskammer verkapselt und parallel zu unver-kapselten Kontrollpellets subkutan in immundefiziente SCID-Mäuse sowie in immunkompetente BDF1-Mäuse implantiert. Die Explantate wurden mit Alzianblau-, Alizarinrot-, Kollagen Typ II-Färbungen, sowie einer ALU in-situ Hybridisierung mar-kiert und mittels Histologiescore doppelt blind bewertet (MannWhitneyU). Überra-schenderweise zeigten die unverkapselten Kontrollen in den BDF1-Mäusen weder Zeichen von Inflammation noch von Destruktion und 4/5 der Pellets waren auf Kol-lagen Typ-II und Alzianblau positiv. Gleichzeitig war der Grad der Mineralisierung in den BDF1-Mäusen gegenüber SCID-Mäusen reduziert (p = 0,03). Durch Alginat wurde die Mineralisierung in den BDF1 Mäusen (0/8) völlig verhindert, während in den SCID-Mäusen noch 7/8 der Pellets Kalzifizierung zeigten (p = 0,001). Die Verkapselung mit Alginat verglichen mit der Kontrolle führte in beiden Mausstämmen zu höheren Scores für Kollagen Typ II (SCID: p = 0,013, BDF1: p = 0,042) und zeigte gleichzeitig eine Reduktion der Mineralisierung (SCID: p = 0,018, BDF1: p = 0,031). In SCID-Mäusen war außerdem der Alzianblau-Wert gegenüber den Kontrollen erhöht (p = 0,003). Die Diffusionskammer erwies sich als ungeeignet, da die Pellets ihre knorpeligen Eigenschaften verloren. Durch die Verwendung des Dialyseschlauches konnte lediglich in der SCID-Maus eine Erhöhung der Kollagen Typ II (p = 0,03) und eine Reduktion der Kalzifizierung (p = 0,004) erreicht werden. Sowohl im Alginatbead in der BDF1-Maus (1/3 Spendern), als auch im Dialyseschlauch mit Kollagenmembran (2/3 Spendern) konnte eine erfolgreiche in vivo Chondrogenese durchgeführt werden. Zur Untersuchung der in vivo Stabilität knorpeliger MSC-basierter Konstrukte stellt die BDF1-Maus eine attraktive, kostengünstige Alternative mit einer gegenüber der SCID-Maus verringerten Mineralisierungsrate dar. Die in vitro gebildete knorpelige Extrazellulärmatrix erzeugt dabei bereits eine Immunisolation, welche die Transplantatdestruktion verhindert. Ob ein intaktes lymphozytäres System die Knorpelstabilität gegenüber defizienten Immunsystemen begünstigt, muss durch die Untersuchung weiterer Ansätze belegt werden. Im Gegensatz zur Diffusionskammer bietet Alginat das richtige Maß an Versorgungsreduktion, um die Stabilisierung des Knorpelphänotyps der Konstrukte zu ermöglichen.
10

Inkjet bioprinting and 3D culture of human MSC-laden binary starPEG-heparin hydrogels for cartilage tissue engineering

Schrön, Felix 12 December 2019 (has links)
Articular cartilage is a highly specialized, hierarchically organized tissue covering the articular surfaces of diarthrodial joints that absorbs and distributes forces upon mechanical loading and enables low-friction movement between opposing bone ends. Despite a strong resilience towards mechanical stress, once damaged cartilage is generally not regenerated due to a limited repair potential of the residing cells (chondrocytes) and the local absence of vascularized blood vessels and nerves. Eventually, this may lead to osteoarthritis, a chronic degenerative disorder of the synovial joints which has a strongly growing prevalence worldwide. Modern regenerative therapies that aim to rebuild cartilage tissue in vivo and in vitro using chondrocyte- and stem cell-based methods are still not able to produce tissue constructs with desired biomechanical properties and organization for long-term repair. Therefore, cartilage tissue engineering seeks for new ways to solve these problems. In this regard, the application of hydrogel-based scaffolding materials as artificial matrix environments to support the chondrogenesis of embedded cells and the implementation of appropriate biofabrication techniques that help to reconstitute the zonal structure of articular cartilage are considered as promising strategies for sophisticated cartilage regeneration approaches. In this thesis, a modular starPEG-heparin hydrogel platform as cell-instructive hydrogel scaffold was used in combination with a custom-designed 3D inkjet bioprinting method with the intention to develop a printable 3D in vitro culture system that promotes the chondrogenic differentiation of human mesenchymal stromal cells (hMSC) in printed cell-laden hydrogels with layered architectures in order to fabricate cartilage-like tissue constructs with hierarchical organization. Firstly, the successful bioprinting of horizontally and vertically structured, cell-free and -laden hydrogel scaffolds that exhibit layer thicknesses in the range of the superficial zone, the thinnest articular cartilage layer is demonstrated. The long-term integrity of the printed constructs and the cellular functionality of the plotted cells that generally had a high viability after the printing process are shown by a successful PDGF-BB-mediated hMSC migration assay in a printed multilayered hydrogel construct over a culture period of 4 weeks. Secondly, when the established printing procedures were applied for the chondrogenic differentiation of hMSCs, it was found that the printed cell-laden constructs showed a limited potential for in vitro chondrogenesis as indicated by a weaker immunostaining for cartilage-specific markers compared to casted hydrogel controls. In order to increase the post-printing cell density to tackle the limited printable cell concentration which was regarded as the primary reason for the impaired performance of the printed scaffolds, different conditions with varying culture medium and hydrogel compositions were tested to stimulate 3D cell proliferation. However, a significant 3D cell number increase could not be achieved which ultimately resulted in shifting the further focus to casted hMSC-laden starPEG-heparin hydrogels. Thirdly, the chondrogenic differentiation of hMSCs in casted hydrogels proved to be successful which was indicated by a uniform deposition of cartilage-specific ECM molecules comparable with the outcomes of scaffold-free MSC micromass cultures used as reference system. However, the quantitative analysis of biochemical and physical properties of the engineered hydrogel constructs yielded still significant lower values in relation to native articular cartilage tissue. Fourthly, in order to improve these properties and to enhance the chondrogenesis in starPEGheparin hydrogels, a dualistic strategy was followed. In the first part, specific externally supplied stimulatory cues including a triple growth factor supply strategy and macromolecular crowding were applied. As second part, intrinsic properties of the modular hydrogel system such as the crosslinking degree, the enzymatic degradability and the heparin content were systematically and independently altered. It was found that while the external cues showed no supportive benefits for the chondrogenic differentiation, the reduction of the heparin content in the hydrogel proved to be a key trigger that resulted in a significantly increased cartilage-like ECM deposition and gel stiffness of engineered constructs with low and no heparin content. In conclusion, this work yielded important experiences with regards to the application of inkjet bioprinting for hMSC-based cartilage tissue engineering approaches. Furthermore, the obtained data provided valuable insights into the interaction of MSCs and a surrounding hydrogel-based microenvironment that can be used for the further development of chondrosupportive scaffolding materials which may facilitate the fabrication of cartilage-like tissue constructs.

Page generated in 0.0879 seconds