• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bistable self-assembly in homogeneous colloidal systems for flexible modular architectures

Steinbach, Gabi, Nissen, Dennis, Albrecht, Manfred, Novak, Ekaterina V., Sánchez, Pedro A., Kantorovich, Sofia S., Gemming, Sibylle, Erbe, Artur 29 April 2016 (has links) (PDF)
This paper presents a homogeneous system of magnetic colloidal particles that self-assembles via two structural patterns of different symmetry. Based on a qualitative comparison between a real magnetic particles system, analytical calculations and molecular dynamics simulations, it is shown that bistability can be achieved by a proper tailoring of an anisotropic magnetization distribution inside the particles. The presented bistability opens new possibilities to form two-dimensionally extended and flexible structures where the connectivity between the particles can be changed in vivo. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
2

Bistable self-assembly in homogeneous colloidal systems for flexible modular architectures

Steinbach, Gabi, Nissen, Dennis, Albrecht, Manfred, Novak, Ekaterina V., Sánchez, Pedro A., Kantorovich, Sofia S., Gemming, Sibylle, Erbe, Artur 29 April 2016 (has links)
This paper presents a homogeneous system of magnetic colloidal particles that self-assembles via two structural patterns of different symmetry. Based on a qualitative comparison between a real magnetic particles system, analytical calculations and molecular dynamics simulations, it is shown that bistability can be achieved by a proper tailoring of an anisotropic magnetization distribution inside the particles. The presented bistability opens new possibilities to form two-dimensionally extended and flexible structures where the connectivity between the particles can be changed in vivo. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.0591 seconds