Spelling suggestions: "subject:"kontrolltheorie"" "subject:"kontrollteori""
1 |
Reachable sets of numerical iteration schemes : a system semigroup approachJordan, Jens January 2008 (has links)
Würzburg, Univ., Diss., 2008
|
2 |
Growth rates for semiflows with application to rotation numbers for control systemsStender, Torben January 2008 (has links)
Zugl.: Augsburg, Univ., Diss., 2008
|
3 |
Simultane Optimierung von Preis- und Investitionsstrategien : ein diskreter kontrolltheoretischer Ansatz /Weiser, Christoph. January 1990 (has links)
Universiẗat, Diss., 1990--Bonn.
|
4 |
Investitions- und kontrolltheoretische Ansätze der Kostenrechnung /Winckler, Barbara. January 1991 (has links)
Techn. Hochsch., Diss., 1990 u.d.T.: Winckler, Barbara: Vergleich des investitionstheoretischen und des kontrolltheoretischen Ansatzes zur Bestimmung entscheidungsorientierter Kosten--Darmstadt.
|
5 |
Kontrolltheorie in Banachräumen und quadratische AbschätzungenHaak, Bernhard H. January 2004 (has links) (PDF)
Zugl.: Karlsruhe, Universiẗat, Diss., 2004.
|
6 |
Analysis and control of infinite dimensional systems a geometric and functional analytic approachRieger, Karl January 2008 (has links)
Zugl.: Linz, Univ., veränd. Diss., 2008
|
7 |
Reachable sets of numerical iteration schemes : a system semigroup approach / Erreichbarkeitsmengen numerischer Iterations Schemata : ein SystemhalbgruppenansatzJordan, Jens January 2008 (has links) (PDF)
We investigate iterative numerical algorithms with shifts as nonlinear discrete-time control systems. Our approach is based on the interpretation of reachable sets as orbits of the system semigroup. In the first part we develop tools for the systematic analysis of the structure of reachable sets of general invertible discrete-time control systems. Therefore we merge classical concepts, such as geometric control theory, semigroup actions and semialgebraic geometry. Moreover, we introduce new concepts such as right divisible systems and the repelling phenomenon. In the second part we apply the semigroup approach to the investigation of concrete numerical iteration schemes. We extend the known results about the reachable sets of classical inverse iteration. Moreover, we investigate the structure of reachable sets and systemgroup orbits of inverse iteration on flag manifolds and Hessenberg varieties, rational iteration schemes, Richardson's method and linear control schemes. In particular we obtain necessary and sufficient conditions for controllability and the appearance of repelling phenomena. Furthermore, a new algorithm for solving linear equations (LQRES) is derived. / Iterative numerische Algorithmen können als zeitdiskrete Systeme betrachtet werden. In dieser Arbeit werden Methoden der nichtlinearen Kontrolltheorie benutzt um iterative numerische Algorithmen zu analysieren. Hierzu wird ein Ansatz verfolgt der darauf basiert, dass Erreichbarkeitsmengen als Halbgruppenorbits interpretiert werden können. Im ersten Teil der Arbeit werden Werkzeuge zur systematischen Analyse von Erreichbarkeitsmengen allgemeiner nichtlinearer Kontrollsystme entwickelt. Dazu werden klassische Konzepte, wie geometrische Kontrolltheorie, Halbgruppenaktionen und semialgebraische Geometrie zusammengeführt. Desweiteren werden neue Konzepte, wie rechtszerlegbare Systeme und Abstoßungsphänomene, eingeführt. Im zweiten Teil der Arbeit werden diese Werkzeuge und dabei insbesondere der Halbgruppenansatz zur Untersuchung konkreter numerischer Algorithmen angewandt. Bekannte Ergebnisse über die Erreichbarkeitsmengen der klassischen inversen Iteration werden erweitert. Die Ergebnisse werden auf inverse Iteration auf Fahnenmannigfaltigkeiten und auf Hessenbergvarietäten erweitert. Untersucht wird zudem die Struktur der Erreichbarkeitsmengen der rationalen Iteration, der Richardsonmethode und von linearen Kontrollsystemen. Insbesondere werden notwendige sowie hinreichende Kriterien sowohl für Kontrollierbarkeit als auch für das Auftreten von Abstoßungsphänomenen bewiesen. Außerdem wird ein neuer Algorithmus zum Lösen linearer Gleichungssysteme vorgestellt.
|
8 |
Exact and non-smooth control of quantum spin systems / Exakte und nicht-glatte Kontrolle von Quanten-Spin-SystemenCiaramella, Gabriele January 2015 (has links) (PDF)
An efficient and accurate computational framework for solving control problems governed by quantum spin systems is presented. Spin systems are extremely important in modern quantum technologies such as nuclear magnetic resonance spectroscopy, quantum imaging and quantum computing. In these applications, two classes of quantum control problems arise: optimal control problems and exact-controllability problems, with a bilinear con- trol structure. These models correspond to the Schrödinger-Pauli equation, describing the time evolution of a spinor, and the Liouville-von Neumann master equation, describing the time evolution of a spinor and a density operator. This thesis focuses on quantum control problems governed by these models. An appropriate definition of the optimiza- tion objectives and of the admissible set of control functions allows to construct controls with specific properties. These properties are in general required by the physics and the technologies involved in quantum control applications. A main purpose of this work is to address non-differentiable quantum control problems. For this reason, a computational framework is developed to address optimal-control prob- lems, with possibly L1 -penalization term in the cost-functional, and exact-controllability problems. In both cases the set of admissible control functions is a subset of a Hilbert space. The bilinear control structure of the quantum model, the L1 -penalization term and the control constraints generate high non-linearities that make difficult to solve and analyse the corresponding control problems. The first part of this thesis focuses on the physical description of the spin of particles and of the magnetic resonance phenomenon. Afterwards, the controlled Schrödinger- Pauli equation and the Liouville-von Neumann master equation are discussed. These equations, like many other controlled quantum models, can be represented by dynamical systems with a bilinear control structure. In the second part of this thesis, theoretical investigations of optimal control problems, with a possible L1 -penalization term in the objective and control constraints, are consid- ered. In particular, existence of solutions, optimality conditions, and regularity properties of the optimal controls are discussed. In order to solve these optimal control problems, semi-smooth Newton methods are developed and proved to be superlinear convergent. The main difficulty in the implementation of a Newton method for optimal control prob- lems comes from the dimension of the Jacobian operator. In a discrete form, the Jacobian is a very large matrix, and this fact makes its construction infeasible from a practical point of view. For this reason, the focus of this work is on inexact Krylov-Newton methods, that combine the Newton method with Krylov iterative solvers for linear systems, and allows to avoid the construction of the discrete Jacobian. In the third part of this thesis, two methodologies for the exact-controllability of quan- tum spin systems are presented. The first method consists of a continuation technique, while the second method is based on a particular reformulation of the exact-control prob- lem. Both these methodologies address minimum L2 -norm exact-controllability problems. In the fourth part, the thesis focuses on the numerical analysis of quantum con- trol problems. In particular, the modified Crank-Nicolson scheme as an adequate time discretization of the Schrödinger equation is discussed, the first-discretize-then-optimize strategy is used to obtain a discrete reduced gradient formula for the differentiable part of the optimization objective, and implementation details and globalization strategies to guarantee an adequate numerical behaviour of semi-smooth Newton methods are treated. In the last part of this work, several numerical experiments are performed to vali- date the theoretical results and demonstrate the ability of the proposed computational framework to solve quantum spin control problems. / Effiziente und genaue Methoden zum Lösen von Kontrollproblemen, die durch Quantum- Spin-Systemen gesteuert werden, werden vorgestellt. Spin-Systeme sind in moderner Quantentechnologie wie Kernspinresonanzspektroskopie, Quantenbildgebung und Quan- tencomputern äußerst wichtig. In diesen Anwendungen treten zwei Arten von Quan- tenkontrollproblemen auf: Optimalsteuerungsprobleme und Exaktsteuerungsprobleme beide mit einer bilinearen Kontrollstruktur. Diese Modelle entsprechen der Schrödinger- Pauli-Gleichung, die die Zeitentwicklung eines Spinors beschreibt, und der Liouville-von- Neumann-Mastergleichung, die die Zeitentwicklung eines Spinors und eines Dichteoper- ators beschreibt. Diese Arbeit konzentriert sich auf Quantenkontrollprobleme, die durch diese Modelle beschrieben werden. Eine entsprechende Definition des Optimierungsziels und der zulässigen Menge von Kontrollfunktionen erlaubt die Konstruktion von Steuerun- gen mit speziellen Eigenschaften. Diese Eigenschaften werden im Allgemeinen von der Physik und der in Quantenkontrolle verwendeten Technologie gefordert.
Ein Hauptziel diser Arbeit ist die Untersuchung nicht-differenzierbarer Quantenkon- trollprobleme. Deshalb werden Rechenmethoden entwickelt um Optimalsteuerungsprob- lemen, die einen L1-Term im Kostenfunktional enthalten, und Exaktsteuerungsprobleme zu lösen. In beiden Fällen ist die zulässige Menge ein Teilraum eines Hilbertraumes. Die bilineare Kontrollstruktur des Quantenmodells, der L1-Kostenterm und die Nebenbedin- gungen der Kontrolle erzeugen starke Nichtlinearitäten, die die Lösung und Analyse der entsprechenden Problemen schwierig gestalten.
Der erste Teil der Disseration konzentriert sich auf die physikalische Beschreibung des Spins von Teilchen und Phänomenen magnetischer Resonanz. Anschließend wird die kon- trollierte Schrödinger-Pauli-Gleichung und die Liouville-von-Neumann-Mastergleichung diskutiert. Diese Gleichungen können ebenso wie viele andere kontrollierte Quantenmod- elle durch ein dynamisches System mit biliniearer Kontrollstruktur dargestellt werden.
Im zweiten Teil der Arbeit wird eine theoretische Untersuchung der Optimalsteuer- ungsprobleme, die einen L1-Kostenterm und Einschränkungen der Kontrolle enthalten können, durchgeführt. Insbesondere wird die Existenz von Lösungen und Optimalitäts- bedingungen und die Regularität der optimalen Kontrolle diskutiert. Um diese Optimal- steuerungsprobleme zu lösen werden halbglatte Newtonverfahren entwickelt und ihre su- perlineare Konvergenz bewiesen. Die Hauptschwierigkeit bei der Implementierung eines Newtonverfahrens für Optimalsteuerungsprobleme ist die Dimension des Jacobiopera- tors. In einer diskreten Form ist der Jacobioperator eine sehr große Matrix, war die Konstruktion in der Praxis undurchführbar macht. Daher konzentriert sich diese Ar- beit auf inexakte Krylov-Newton-Verfahren, die Newtonverfahren mit iterativen Krylov- Lösern für lineare Gleichungssysteme kombinieren, was die Konstruktion der diskreten Jacobimatrix erübrigt.
Im dritten Teil der Disseration werden zwei Methoden für die Lösung von exakte Steuerbarkeit Problemen für Quanten-Spin-Systemen vorgestellt. Die erste Methode ist eine Fortsetzungstechnik während die zweite Methode auf einer bestimmten Refor- mulierung des exakten Kontrollproblems basiert. Beide Verfahren widmen sich L2-Norm exakten Steuerbarkeitsproblemen.
Im vierten Teil die Disseration konzentriert sich auf die numerische Analyse von Quan- tenkontrollproblemen. Insbesondere wird das modifizierte Crank-Nicolson-Verfahren als eine geeignete Zeitdiskretisierung der Schrödingergleichung diskutiert. Es wird erst diskretisiert und nachfolgend optimiert, um den diskreten reduzierten Gradienten für den differenzierbaren Teil des Optimierungsziels zu erhalten. Die Details der Implemen- tierung und der Globalisierungsstrategie, die angemessenes numerisches Verhalten der halbglatten Newtonverfahren garantiert, werden behandelt.
Im letzten Teil dieser Arbeit werden verschiedene numerische Experimente durchge- führt um die theoretischen Ergebnisse zu validieren und die Fähigkeiten de vorgeschla- genen Lösungsstrategie für Quanten-Spin-Kontrollproblemen zu validieren.
|
9 |
Rational matrix equations in stochastic control /Damm, Tobias. January 2004 (has links)
Univ., Diss.--Bremen, 2002.
|
10 |
Controllability Aspects of the Lindblad-Kossakowski Master Equation : A Lie-Theoretical Approach / Kontrollierbarkeitsaspekte der Lindblad-Kossakowski Master-Gleichung : Ein Lie-theoretischer AnsatzKurniawan, Indra January 2009 (has links) (PDF)
One main task, which is considerably important in many applications in quantum control, is to explore the possibilities of steering a quantum system from an initial state to a target state. This thesis focuses on fundamental control-theoretical issues of quantum dynamics described by the Lindblad-Kossakowski master equation which arises as a bilinear control system on some underlying real vector spaces, e.g controllability aspects and the structure of reachable sets. Based on Lie-algebraic methods from nonlinear control theory, the thesis presents a unified approach to control problems of finite dimensional closed and open quantum systems. In particular, a simplified treatment for controllability of closed quantum systems as well as new accessibility results for open quantum systems are obtained. The main tools to derive the results are the well-known classifications of all matrix Lie groups which act transitively on Grassmann manifolds, and respectively, on real vector spaces without the origin. It is also shown in this thesis that accessibiity of the Lindblad-Kossakowski master equation is a generic property. Moreover, based on the theoretical accessibility results, an algorithm is developed to decide when the Lindblad-Kossakowski master equation is accessible. / Eine Hauptaufgabe, mit zahlreichen wichtigen Anwendungen in dem Gebiet der Quantenkontrolle, ist die Untersuchung der Möglichkeit zur Steuerung eines quantenmechanischen Systems von einem Anfangszustand zum einem Zielszustand. Diese Arbeit konzentriert sich auf die grundlegenden kontrolltheoretischen Fragen, wie z.B solche zur Erreichbarkeits- und Kontrollierbarkeit, über quantendynamische Systeme, die durch die Lindblad-Kossakowski Master Gleichungen beschrieben werden. Diese Gleichungen bilden bilineare Kontrollsysteme auf einem reellen Vektorraum. Basierend auf Lie-algebraische Methoden der nicht-linearen Kontrolltheorie, wird in dieser Arbeit ein vereinheitlichter Zugang präsentiert um die kontrolltheoretischen Fragen in endlichdimensionalen, geschlossenen wie offenen Quantensystemen zu beantworten. Insbesondere, werden eine vereinfachte Verarbeitung der Kontrollierbarkeitsfragen geschlossener Systeme sowie neue Ergebnisse zur Frage der Zugänglichkeit offener Systeme ausgearbeitet. Der Hauptansatz, um dieser Ergebnisse abzuleiten, besteht in der bekannten Klassifizierung aller Matrix-Lie Gruppen, die auf Grassmann Mannigfaltigkeiten bzw. reellen Vektorräumen ohne Ursprung, transitiv operieren. In dieser Arbeit, werden auch generische Eigenschaften zur Zugänglichkeit der Lindblad-Kossakowski Master Gleichung ausgeführt. Ferner wird, mit Hilfsmittel von theoretischer Ergebnisse, ein Algorithmus zur Bestimmung der Zugänglichkeit der Lindblad-Kossakowski Master Gleichung entwickelt.
|
Page generated in 0.0659 seconds