• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • Tagged with
  • 12
  • 12
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimating Permeability from the Grain-Size Distributions of Natural Sediment

Mastera, Lawrence 08 July 2010 (has links)
No description available.
2

Modelagem e simulação do escoamento imiscível em meios porosos fractais descritos pela equação de Kozeny-Carman Generalizada / Modeling and simulation of immiscible flow in porous fractals described by the equation of Kozeny-Carman Generalized

Juan Diego Cardoso Brêttas 18 April 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work deals with the two-phase flow in heterogeneous porous media of fractal nature, where the fluids are considered immiscible. The porous media are modeled by the Kozeny-Carman Generalized (KCG) equation, a relationship between permeability and porosity obtained from a new power law. This equation proposed by us is able to generalize various models of the literature, and thus is of more general use. The numerical simulator developed here employs finite difference methods. Following the classic strategy called IMPES, the evolution in the time is based on an operators splitting technique. Thus, the pressure field is computed implicitly, whereas the saturation equation of wetting phase is solved explicitly in each time step. The optimization method called DFSANE is used to solve pressure equation. We emphasize that the DFSANE method has not been used before in the reservoir simulation context. Therefore, its use here is unprecedented. To minimize numerical diffusions, the saturation equation is discretized by an upwind-type scheme, commonly employed in numerical simulators for petroleum recovery, which is explicitly solved by the fourth order Runge-Kutta method. The simulation results are quite satisfatory. In fact, these results show that the KCG model is able to generate heterogeneous porous media, whose features enable to capture physical phenomena that are generally inaccessible to many simulators based on classical finite differences, as the so-called fingering phenomenon, which occurs when the mobility ratio (between the fluid phases) assumes adverse values. In all simulations presented here, we consider that the immiscible flow is two-dimensional. Thus, the porous medium is characterized by permeability and porosity fields defined in two-dimensional Euclidean regions. However, the theory discussed in this work does not impose restrictions for the their application to three-dimensional problems. / O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.
3

Modelagem e simulação do escoamento imiscível em meios porosos fractais descritos pela equação de Kozeny-Carman Generalizada / Modeling and simulation of immiscible flow in porous fractals described by the equation of Kozeny-Carman Generalized

Juan Diego Cardoso Brêttas 18 April 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work deals with the two-phase flow in heterogeneous porous media of fractal nature, where the fluids are considered immiscible. The porous media are modeled by the Kozeny-Carman Generalized (KCG) equation, a relationship between permeability and porosity obtained from a new power law. This equation proposed by us is able to generalize various models of the literature, and thus is of more general use. The numerical simulator developed here employs finite difference methods. Following the classic strategy called IMPES, the evolution in the time is based on an operators splitting technique. Thus, the pressure field is computed implicitly, whereas the saturation equation of wetting phase is solved explicitly in each time step. The optimization method called DFSANE is used to solve pressure equation. We emphasize that the DFSANE method has not been used before in the reservoir simulation context. Therefore, its use here is unprecedented. To minimize numerical diffusions, the saturation equation is discretized by an upwind-type scheme, commonly employed in numerical simulators for petroleum recovery, which is explicitly solved by the fourth order Runge-Kutta method. The simulation results are quite satisfatory. In fact, these results show that the KCG model is able to generate heterogeneous porous media, whose features enable to capture physical phenomena that are generally inaccessible to many simulators based on classical finite differences, as the so-called fingering phenomenon, which occurs when the mobility ratio (between the fluid phases) assumes adverse values. In all simulations presented here, we consider that the immiscible flow is two-dimensional. Thus, the porous medium is characterized by permeability and porosity fields defined in two-dimensional Euclidean regions. However, the theory discussed in this work does not impose restrictions for the their application to three-dimensional problems. / O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.
4

Porosity and Permeability in Ternary Sediment Mixtures

Esselburn, Jason Dennis 01 July 2009 (has links)
No description available.
5

The Kozeny-Carman Equation Considered With a Percolation Threshold

Porter, Lee Brenson, II 14 July 2011 (has links)
No description available.
6

Relationship Between Log Permeability and Fraction of Finer Grains in Bimodal Sediment Mixtures

Verdibello, Steven M. 20 July 2012 (has links)
No description available.
7

A study into the permeability and compressibility of Australian bagasse pulp

Rainey, Thomas James January 2009 (has links)
This is an experimental study into the permeability and compressibility properties of bagasse pulp pads. Three experimental rigs were custom-built for this project. The experimental work is complemented by modelling work. Both the steady-state and dynamic behaviour of pulp pads are evaluated in the experimental and modelling components of this project. Bagasse, the fibrous residue that remains after sugar is extracted from sugarcane, is normally burnt in Australia to generate steam and electricity for the sugar factory. A study into bagasse pulp was motivated by the possibility of making highly value-added pulp products from bagasse for the financial benefit of sugarcane millers and growers. The bagasse pulp and paper industry is a multibillion dollar industry (1). Bagasse pulp could replace eucalypt pulp which is more widely used in the local production of paper products. An opportunity exists for replacing the large quantity of mainly generic paper products imported to Australia. This includes 949,000 tonnes of generic photocopier papers (2). The use of bagasse pulp for paper manufacture is the main application area of interest for this study. Bagasse contains a large quantity of short parenchyma cells called ‘pith’. Around 30% of the shortest fibres are removed from bagasse prior to pulping. Despite the ‘depithing’ operations in conventional bagasse pulp mills, a large amount of pith remains in the pulp. Amongst Australian paper producers there is a perception that the high quantity of short fibres in bagasse pulp leads to poor filtration behaviour at the wet-end of a paper machine. Bagasse pulp’s poor filtration behaviour reduces paper production rates and consequently revenue when compared to paper production using locally made eucalypt pulp. Pulp filtration can be characterised by two interacting factors; permeability and compressibility. Surprisingly, there has previously been very little rigorous investigation into neither bagasse pulp permeability nor compressibility. Only freeness testing of bagasse pulp has been published in the open literature. As a result, this study has focussed on a detailed investigation of the filtration properties of bagasse pulp pads. As part of this investigation, this study investigated three options for improving the permeability and compressibility properties of Australian bagasse pulp pads. Two options for further pre-treating depithed bagasse prior to pulping were considered. Firstly, bagasse was fractionated based on size. Two bagasse fractions were produced, ‘coarse’ and ‘medium’ bagasse fractions. Secondly, bagasse was collected after being processed on two types of juice extraction technology, i.e. from a sugar mill and from a sugar diffuser. Finally one method of post-treating the bagasse pulp was investigated. The effects of chemical additives, which are known to improve freeness, were also assessed for their effect on pulp pad permeability and compressibility. Pre-treated Australian bagasse pulp samples were compared with several benchmark pulp samples. A sample of commonly used kraft Eucalyptus globulus pulp was obtained. A sample of depithed Argentinean bagasse, which is used for commercial paper production, was also obtained. A sample of Australian bagasse which was depithed as per typical factory operations was also produced for benchmarking purposes. The steady-state pulp pad permeability and compressibility parameters were determined experimentally using two purpose-built experimental rigs. In reality, steady-state conditions do not exist on a paper machine. The permeability changes as the sheet compresses over time. Hence, a dynamic model was developed which uses the experimentally determined steady-state permeability and compressibility parameters as inputs. The filtration model was developed with a view to designing pulp processing equipment that is suitable specifically for bagasse pulp. The predicted results of the dynamic model were compared to experimental data. The effectiveness of a polymeric and microparticle chemical additives for improving the retention of short fibres and increasing the drainage rate of a bagasse pulp slurry was determined in a third purpose-built rig; a modified Dynamic Drainage Jar (DDJ). These chemical additives were then used in the making of a pulp pad, and their effect on the steady-state and dynamic permeability and compressibility of bagasse pulp pads was determined. The most important finding from this investigation was that Australian bagasse pulp was produced with higher permeability than eucalypt pulp, despite a higher overall content of short fibres. It is thought this research outcome could enable Australian paper producers to switch from eucalypt pulp to bagasse pulp without sacrificing paper machine productivity. It is thought that two factors contributed to the high permeability of the bagasse pulp pad. Firstly, thicker cell walls of the bagasse pulp fibres resulted in high fibre stiffness. Secondly, the bagasse pulp had a large proportion of fibres longer than 1.3 mm. These attributes helped to reinforce the pulp pad matrix. The steady-state permeability and compressibility parameters for the eucalypt pulp were consistent with those found by previous workers. It was also found that Australian pulp derived from the ‘coarse’ bagasse fraction had higher steady-state permeability than the ‘medium’ fraction. However, there was no difference between bagasse pulp originating from a diffuser or a mill. The bagasse pre-treatment options investigated in this study were not found to affect the steady-state compressibility parameters of a pulp pad. The dynamic filtration model was found to give predictions that were in good agreement with experimental data for pads made from samples of pretreated bagasse pulp, provided at least some pith was removed prior to pulping. Applying vacuum to a pulp slurry in the modified DDJ dramatically reduced the drainage time. At any level of vacuum, bagasse pulp benefitted from chemical additives as quantified by reduced drainage time and increased retention of short fibres. Using the modified DDJ, it was observed that under specific conditions, a benchmark depithed bagasse pulp drained more rapidly than the ‘coarse’ bagasse pulp. In steady-state permeability and compressibility experiments, the addition of chemical additives improved the pad permeability and compressibility of a benchmark bagasse pulp with a high quantity of short fibres. Importantly, this effect was not observed for the ‘coarse’ bagasse pulp. However, dynamic filtration experiments showed that there was also a small observable improvement in filtration for the ‘medium’ bagasse pulp. The mechanism of bagasse pulp pad consolidation appears to be by fibre realignment. Chemical additives assist to lubricate the consolidation process. This study was complemented by pulp physical and chemical property testing and a microscopy study. In addition to its high pulp pad permeability, ‘coarse’ bagasse pulp often (but not always) had superior physical properties than a benchmark depithed bagasse pulp.
8

Geração de meios porosos fractais com uma nova equação do tipo Kozeny-Carman / Generation of fractal porous media with a new equation of the type Kozeny-Carman

Juan Diego Cardoso Brêttas 08 February 2010 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / A relação entre porosidade e permeabilidade desperta o interesse de pesquisadores e engenheiros por causa de suas diversas aplicações. Tais como na utilização de filtros, materiais pouco permeáveis, reservatórios naturais, etc. Ao longo do século XX, diversos trabalhos propondo tal relação foram apresentados na literatura e grande parte desses trabalhos desenvolvem modelos baseados na equação clássica de Kozeny-Carman. Nesta dissertação, propomos um modelo mais robusto que a formulação clássica de Kozeny-Carman, ou seja, que não apresenta as limitações dessa equação clássica. Além disso, um estudo baseado na Teoria dos Meios Fractais indica que o modelo estudado, nesta dissertação, generaliza diversas equações que fornecem a relação entre porosidade e permeabilidade. Por fim, será mostrado que o modelo proposto é capaz de descrever a relação entre porosidade e permeabilidade de diversos materiais porosos de natureza fractal. / The relationship between porosity and permeability attracts the attention of researchers and engineers because of their various applications. Such as in utilization of filters, waterproof materials, natural reservoirs, for example.Throughout the twentieth century, several works proposed in the literature they study the relation porosity-permeability, and much of this works they develop models based on the classical equation of Kozeny-Carman. In this dissertation, we propose a model more robust than the classical formulation of Kozeny-Carman, ie, that does not have the limitations of the equation classical. Furthermore, a study based on the Theory of the Media Fractals indicates that the model studied in this dissertation provide the relationship between porosity and permeability of several models presented in the literature. Finally, it will shown that the model proposed is able to describe the relationship between porosity and permeability of porous materials of various fractal nature.
9

Geração de meios porosos fractais com uma nova equação do tipo Kozeny-Carman / Generation of fractal porous media with a new equation of the type Kozeny-Carman

Juan Diego Cardoso Brêttas 08 February 2010 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / A relação entre porosidade e permeabilidade desperta o interesse de pesquisadores e engenheiros por causa de suas diversas aplicações. Tais como na utilização de filtros, materiais pouco permeáveis, reservatórios naturais, etc. Ao longo do século XX, diversos trabalhos propondo tal relação foram apresentados na literatura e grande parte desses trabalhos desenvolvem modelos baseados na equação clássica de Kozeny-Carman. Nesta dissertação, propomos um modelo mais robusto que a formulação clássica de Kozeny-Carman, ou seja, que não apresenta as limitações dessa equação clássica. Além disso, um estudo baseado na Teoria dos Meios Fractais indica que o modelo estudado, nesta dissertação, generaliza diversas equações que fornecem a relação entre porosidade e permeabilidade. Por fim, será mostrado que o modelo proposto é capaz de descrever a relação entre porosidade e permeabilidade de diversos materiais porosos de natureza fractal. / The relationship between porosity and permeability attracts the attention of researchers and engineers because of their various applications. Such as in utilization of filters, waterproof materials, natural reservoirs, for example.Throughout the twentieth century, several works proposed in the literature they study the relation porosity-permeability, and much of this works they develop models based on the classical equation of Kozeny-Carman. In this dissertation, we propose a model more robust than the classical formulation of Kozeny-Carman, ie, that does not have the limitations of the equation classical. Furthermore, a study based on the Theory of the Media Fractals indicates that the model studied in this dissertation provide the relationship between porosity and permeability of several models presented in the literature. Finally, it will shown that the model proposed is able to describe the relationship between porosity and permeability of porous materials of various fractal nature.
10

Hydrostratigraphy of the Paris Moraine in the Guelph Area, Ontario, Canada

Trapp, Andrew 11 1900 (has links)
Many growing southern Ontario communities, including Guelph, rely on fractured bedrock aquifers for drinking water. Contamination and overexploitation pose a threat to these water resources, necessitating characterization of vulnerability, risks, and recharge areas. Quaternary sediments southeast of the City of Guelph, including the Paris Moraine, were investigated in order to delineate hydrostratigraphy. This was achieved through study of 9 cored-holes, as well as existing MOE, GRCA, and University of Guelph data. Falling head permeameter measurements and empirical grain-size distribution measurements and analysis were employed for determination of 𝐾𝑠𝑎𝑡 values, which were used to construct a hydrostratigraphy. Of 19 methods evaluated, The Kozeny-Carman empirical grain-size method for determining 𝐾𝑠𝑎𝑡 was found to be more representative of measured values for the study area. The area is dominated by a conductivity regime of 2.72x10-7 – 1.40x10-6 m/s with local heterogeneity present on the scale of 10’s to 100’s of meters. The Paris Moraine, particularly its backslope, is at higher risk due to its relatively high conductivity, greater occurrence of aquifer units, as well as prevalence of small-scale topographic (hummocky topography), and bedrock topographic lows. / Thesis / Master of Science (MSc)

Page generated in 0.0429 seconds