Spelling suggestions: "subject:"kullbackleibler""
1 |
有影響力自變數的偵測盧惟真 Unknown Date (has links)
在一個具有多個自變數的線性模式中,當我們發現模式在加入或刪除某些自變數時,若對其他參數的估計或估計分配或後驗分配造成極大的影響,我們就有必要提出警告訊息並做進一步分析。而偵測這些造成影響之自變數的方法,除了Schall和Dunne(1990)所提的Cook距離和AP統計量外,本文提出用Kullback-Leibler對稱散度的方法,以自變數增加前後,參數估計分配間的差異作為所加入之自變數影響力的指標。另一方面,就貝氏的觀點,以自變數增加前後,參數後驗分配間的差異程度作為偵測有影響力自變數的方法。此外,本文亦探索Kullback-Leibler對稱散度與自變數間共線性的關係。
|
2 |
自變數增加對岭估計的影響分析萬世卿, Wan, Shin Chin Unknown Date (has links)
在最小平方估計中,當自變數間有共線性關係時,參數估計的變異變大,使得參數估計值不穩定。解決共線性對參數估計所造成影響的方法有很多,岭估計就是其中之一。在岭估計中,為了偵測出對岭估計有影響力的自變數,本文仿照Schall-Dunne的處理方式,推導出類似的Cook統計量及AP估計量,並且提出以Kullback-Leibler對稱散度來偵測對岭估計有影響力自變數。最後用"加拿大金融市場"與"員工對主管滿意度調查"的兩個實例,來說明本文所提出對岭估計有影響力自變數之偵測方法。
|
Page generated in 0.0214 seconds