• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 12
  • 12
  • 8
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Computational dynamics – real and complex

Belova, Anna January 2017 (has links)
The PhD thesis considers four topics in dynamical systems and is based on one paper and three manuscripts. In Paper I we apply methods of interval analysis in order to compute the rigorous enclosure of rotation number. The described algorithm is supplemented with a method of proving the existence of periodic points which is used to check rationality of the rotation number. In Manuscript II we provide a numerical algorithm for computing critical points of the multiplier map for the quadratic family (i.e., points where the derivative of the multiplier with respect to the complex parameter vanishes). Manuscript III concerns continued fractions of quadratic irrationals. We show that the generating function corresponding to the sequence of denominators of the best rational approximants of a quadratic irrational is a rational function with integer coefficients. As a corollary we can compute the Lévy constant of any quadratic irrational explicitly in terms of its partial quotients. Finally, in Manuscript IV we develop a method for finding rigorous enclosures of all odd periodic solutions of the stationary Kuramoto-Sivashinsky equation. The problem is reduced to a bounded, finite-dimensional constraint satisfaction problem whose solution gives the desired information about the original problem. Developed approach allows us to exclude the regions in L2, where no solution can exist.
12

Recurrent spatio-temporal structures in presence of continuous symmetries

Siminos, Evangelos 06 April 2009 (has links)
When statistical assumptions do not hold and coherent structures are present in spatially extended systems such as fluid flows, flame fronts and field theories, a dynamical description of turbulent phenomena becomes necessary. In the dynamical systems approach, theory of turbulence for a given system, with given boundary conditions, is given by (a) the geometry of its infinite-dimensional state space and (b) the associated measure, that is, the likelihood that asymptotic dynamics visits a given state space region. In this thesis this vision is pursued in the context of Kuramoto-Sivashinsky system, one of the simplest physically interesting spatially extended nonlinear systems. With periodic boundary conditions, continuous translational symmetry endows state space with additional structure that often dictates the type of observed solutions. At the same time, the notion of recurrence becomes relative: asymptotic dynamics visits the neighborhood of any equivalent, translated point, infinitely often. Identification of points related by the symmetry group action, termed symmetry reduction, although conceptually simple as the group action is linear, is hard to implement in practice, yet it leads to dramatic simplification of dynamics. Here we propose a scheme, based on the method of moving frames of Cartan, to efficiently project solutions of high-dimensional truncations of partial differential equations computed in the original space to a reduced state space. The procedure simplifies the visualization of high-dimensional flows and provides new insight into the role the unstable manifolds of equilibria and traveling waves play in organizing Kuramoto-Sivashinsky flow. This in turn elucidates the mechanism that creates unstable modulated traveling waves (periodic orbits in reduced space) that provide a skeleton of the dynamics. The compact description of dynamics thus achieved sets the stage for reduction of the dynamics to mappings between a set of Poincare sections.

Page generated in 0.0353 seconds