• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Morphologische, immunphänotypische und elektrophysiologische Eigenschaften deaktivierter muriner Mikroglia in vitro

Schilling, Tom 16 July 2001 (has links)
Murine Mikrogliakulturen wurden mit Astrozyten-konditioniertem Medium (ACM) in einen deaktivierten Zustand überführt. Dies wurde anhand morphologischer (Grad der Ramifizierung) und immunologischer (Expression von Adhäsionsmolekülen) Parameter verifiziert. Durch den Einsatz von Makrophagen-koloniestimulierenden Faktor (M-CSF), Granulozyten/Makrophagen-koloniestimulierenden Faktor (GM-CSF), transformierenden Wachstumsfaktor beta (TGF-beta) und den gegen sie gerichteten Antikörpern wurde gezeigt, daß alle untersuchten Zytokine in unterschiedlichem Maße an der Deaktivierung der Mikrogliazellen durch ACM beteiligt sind. Außerdem wurde nach Stimulation mit ACM an murinen Mikrogliazellen eine transiente Hochregulation eines Kaliumauswärtsstromes beobachtet Das Auftreten dieses Kalium-stromes nach Inkubation der Mikrogliazellen mit ACM konnte auf die Wirkung von TGF-beta, welches im ACM enthalten ist, zurückgeführt werden. Der durch ACM in deaktivierter Mikroglia induzierte Kaliumkanal entsprach in seinen kinetischen und pharma-kologischen Eigenschaften am ehesten dem klonierten Kanal Kv1.3. Die Kv1.3 Expression durch TGF-beta oder ACM war durch den unspezifischen Proteinkinaseinhibitor H7 unterdrückbar. Diese Ergebnisse zeigen, daß die Expression des Kv1.3 Kanals nicht, wie bisher angenommen, ein Indikator für aktivierte Mikroglia ist. / Murine microglial cultures were deactivated with astrocyte-conditioned medium (ACM). The deactivation process was verified measuring morphological (ramification index) and immunological (expression level of adhesion molecules) parameters. By using macrophage-colony stimulating factor (M-CSF), granulocyte/macrophage-colony stimulating factor (GM-CSF), transforming growth factor beta (TGF-beta) and their corresponding antibodies it was shown, that to a different extent all of these cytokines influence the deactivation process of microglial cells by ACM. ACM treatment of microglial cultures also lead to a transient upregulation of a delayed potassium outward current. This upregulation was due to the impact of TGF-beta contained in ACM. The ACM induced potassium channel resembled in its kinetic and pharmacological properties the cloned Kv1.3 channel. Expression of Kv1.3 in microglial cells by TGF-beta or ACM was inhibited by the unspecific protein kinase inhibitor H7. These results show, that expression of Kv1.3 channels is not a special feature of activated microglia, which has been proposed in recent publications.
2

Rôles et caractérisation de la microglie dans le développement du néocortex somatosensoriel de la souris / Roles and caracterisation of microglia in the mouse developing somatosensory neocortex

Arnoux, Isabelle 24 April 2014 (has links)
Les cellules microgliales, qui sont les macrophages du système nerveux central, ont été principalement étudiées en conditions pathologiques. Néanmoins, l'étude de la microglie aux stades périnataux indique qu'elle influence le développement normal du système nerveux central. Des interactions directes et indirectes entre la microglie et les synapses existent mais les mécanismes par lesquels ces cellules immunitaires ciblent les synapses et modulent leur maturation fonctionnelle durant le développement postnatal sont peu connus. Au cours de mon travail de thèse, je me suis intéressée aux cellules microgliales et à leurs fonctions dans le développement postnatal du cortex somato-sensoriel de la souris. Dans une première étude, nous avons montré qu'au cours de la première semaine post-natale le recrutement des cellules microgliales aux sites synaptiques en maturation met en jeu une voie de signalisation impliquant la chimiokine neuronale fractalkine et de son récepteur microglial CX3CR1. En effet, un défaut d’expression de ce récepteur retarde le recrutement des cellules microgliales aux sites synaptiques et entraine un retard de maturation fonctionnelle des synapses thalamocorticales. Dans une seconde étude, nous avons caractérisé le phénotype des cellules microgliales lors de la maturation fonctionnelle des réseaux synaptiques corticaux. Nous avons montré que les cellules microgliales adoptent un phénotype particulier lorsqu’elles sont recrutées aux synapses en maturation. Ce phénotype diffère de celui exprimé par la microglie adulte en conditions physiologiques et pathologiques et pourrait permettre aux cellules microgliales d’accomplir des fonctions spécifiques nécessaires à la maturation synaptique. Dans une troisième étude, nous avons testé les effets de la minocycline sur le développement cortical. Cette tétracycline est connue pour bloquer l’activation microgliale chez l'adulte. De façon surprenante, nous avons observé que pendant une période critique se situant à la fin de la première semaine post-natale la minocycline induit une importante mort cellulaire qui s'accompagne d'une altération de la distribution des cellules microgliales et déclenche leur activation. L'ensemble de mes données montrent que les cellules microgliales sont très sensibles aux changements de leur environnement, que leur phénotype fonctionnel change en conditions physiologiques en fonction de cet environnement et que des interactions réciproques entre neurones et microglie influencent la maturation fonctionnelle des réseaux synaptiques corticaux lors du développement postnatal. / The microglial cells, which are the resident macrophages of the central nervous system, have been mainly studied in pathological conditions. But, the study of microglia at perinatal stages indicates that they influence the normal development of the central nervous system. Direct and indirect interactions between microglia and synapses exist but mechanisms by which these immune cells target synapses and modulate their functional maturation during post-natal development are still unknown. During my PhD thesis, I was interested in microglial cells and their functions during postnatal development of the mouse somatosensory cortex. In a first study, we showed that during the first postnatal week the recruitment of microglial cells at maturating synaptic sites requires a signaling pathway involving the neuronal chemokine fractalkine and its microglial receptor CX3CR1. Indeed, a deficit in the expression of this receptor delays the recruitment of microglial cells at synaptic sites and leads to a delayed functional maturation of thalamocortical synapses. In a second study, we characterized the phenotype of microglial cells during the functional maturation of cortical synaptic network. We showed that microglial cells adopt a particular phenotype when they are recruited at maturating synapses. This phenotype differs from that expressed by adult microglia in physiological and pathological conditions and may allow microglial cells to accomplish specific functions which are necessary to synaptic maturation. In a third study, we tested the effects of the minocycline on the cortical development. This tetracycline is known to block the microglial activation in adult. Surprisingly, we observed that during a critical period ending at the end of the first post-natal week, minocycline induces an important cellular death which is accompanied by an alteration of microglial cells distribution and which also triggers their activation. Taken together, my data show that microglial cells are highly sensitive to changes in their environment, their functional phenotype evolves in physiological conditions in function of this environment and reciprocal interactions between neurons and microglia influence the functional maturation of cortical synaptic network during the postnatal development.
3

Rôles et caractérisation de la microglie dans le développement du néocortex somatosensoriel de la souris

Arnoux, Isabelle 24 April 2014 (has links) (PDF)
Les cellules microgliales, qui sont les macrophages du système nerveux central, ont été principalement étudiées en conditions pathologiques. Néanmoins, l'étude de la microglie aux stades périnataux indique qu'elle influence le développement normal du système nerveux central. Des interactions directes et indirectes entre la microglie et les synapses existent mais les mécanismes par lesquels ces cellules immunitaires ciblent les synapses et modulent leur maturation fonctionnelle durant le développement postnatal sont peu connus. Au cours de mon travail de thèse, je me suis intéressée aux cellules microgliales et à leurs fonctions dans le développement postnatal du cortex somato-sensoriel de la souris. Dans une première étude, nous avons montré qu'au cours de la première semaine post-natale le recrutement des cellules microgliales aux sites synaptiques en maturation met en jeu une voie de signalisation impliquant la chimiokine neuronale fractalkine et de son récepteur microglial CX3CR1. En effet, un défaut d'expression de ce récepteur retarde le recrutement des cellules microgliales aux sites synaptiques et entraine un retard de maturation fonctionnelle des synapses thalamocorticales. Dans une seconde étude, nous avons caractérisé le phénotype des cellules microgliales lors de la maturation fonctionnelle des réseaux synaptiques corticaux. Nous avons montré que les cellules microgliales adoptent un phénotype particulier lorsqu'elles sont recrutées aux synapses en maturation. Ce phénotype diffère de celui exprimé par la microglie adulte en conditions physiologiques et pathologiques et pourrait permettre aux cellules microgliales d'accomplir des fonctions spécifiques nécessaires à la maturation synaptique. Dans une troisième étude, nous avons testé les effets de la minocycline sur le développement cortical. Cette tétracycline est connue pour bloquer l'activation microgliale chez l'adulte. De façon surprenante, nous avons observé que pendant une période critique se situant à la fin de la première semaine post-natale la minocycline induit une importante mort cellulaire qui s'accompagne d'une altération de la distribution des cellules microgliales et déclenche leur activation. L'ensemble de mes données montrent que les cellules microgliales sont très sensibles aux changements de leur environnement, que leur phénotype fonctionnel change en conditions physiologiques en fonction de cet environnement et que des interactions réciproques entre neurones et microglie influencent la maturation fonctionnelle des réseaux synaptiques corticaux lors du développement postnatal.
4

Rôles et caractérisation de la microglie dans le développement du néocortex somatosensoriel de la souris

Arnoux, Isabelle 24 April 2014 (has links) (PDF)
Les cellules microgliales, qui sont les macrophages du système nerveux central, ont été principalement étudiées en conditions pathologiques. Néanmoins, l'étude de la microglie aux stades périnataux indique qu'elle influence le développement normal du système nerveux central. Des interactions directes et indirectes entre la microglie et les synapses existent mais les mécanismes par lesquels ces cellules immunitaires ciblent les synapses et modulent leur maturation fonctionnelle durant le développement postnatal sont peu connus. Au cours de mon travail de thèse, je me suis intéressée aux cellules microgliales et à leurs fonctions dans le développement postnatal du cortex somato-sensoriel de la souris. Dans une première étude, nous avons montré qu'au cours de la première semaine post-natale le recrutement des cellules microgliales aux sites synaptiques en maturation met en jeu une voie de signalisation impliquant la chimiokine neuronale fractalkine et de son récepteur microglial CX3CR1. En effet, un défaut d'expression de ce récepteur retarde le recrutement des cellules microgliales aux sites synaptiques et entraine un retard de maturation fonctionnelle des synapses thalamocorticales. Dans une seconde étude, nous avons caractérisé le phénotype des cellules microgliales lors de la maturation fonctionnelle des réseaux synaptiques corticaux. Nous avons montré que les cellules microgliales adoptent un phénotype particulier lorsqu'elles sont recrutées aux synapses en maturation. Ce phénotype diffère de celui exprimé par la microglie adulte en conditions physiologiques et pathologiques et pourrait permettre aux cellules microgliales d'accomplir des fonctions spécifiques nécessaires à la maturation synaptique. Dans une troisième étude, nous avons testé les effets de la minocycline sur le développement cortical. Cette tétracycline est connue pour bloquer l'activation microgliale chez l'adulte. De façon surprenante, nous avons observé que pendant une période critique se situant à la fin de la première semaine post-natale la minocycline induit une importante mort cellulaire qui s'accompagne d'une altération de la distribution des cellules microgliales et déclenche leur activation. L'ensemble de mes données montrent que les cellules microgliales sont très sensibles aux changements de leur environnement, que leur phénotype fonctionnel change en conditions physiologiques en fonction de cet environnement et que des interactions réciproques entre neurones et microglie influencent la maturation fonctionnelle des réseaux synaptiques corticaux lors du développement postnatal.
5

SIGNALING MECHANISMS INVOLVED IN THE GENERATION OF HUMAN PERIPHERAL iTREGS

Reneer, Mary Catherine 01 January 2012 (has links)
Maintaining balance in the human immune system is critical for the body’s ability to discriminate between foreign and self-antigens. This balance is achieved, in part, by a subpopulation of T cells known as induced regulatory T cells (iTregs). Dysregulation of this population may contribute to the onset and progression of cancer, chronic inflammation and autoimmune diseases. Therefore, manipulation of iTreg development holds promising therapeutic potential; however, studying this vital population has proven difficult due to low numbers, heterogeneous cell populations, substantial phenotypic differences between mouse and human cells, and the high plasticity seen in iTregs. These current limitations have prevented a full understanding of the molecular signaling events that govern their development and function. Our lab has established a novel cell culture system that mimics in vivo human iTreg development. This system allows for the discrimination and comparison of naïve, memory and iTreg T cell populations simultaneously within a single donor. These iTregs exhibit high levels of CD25, FoxP3, CTLA4, GITR, low levels of CD127 and display strong suppressor activity. Using this innovative system, we have demonstrated a rewiring of T cell receptor (TCR) signaling in iTregs compared to conventional T cells. We found that the voltage gated K+ ion channel-Kv1.3 is not active in response to TCR engagement in iTregs, even though Ca2+ influx remains intact. Kv1.3 and the linked Src-family kinase Lck were redistributed to the highly active IL2-Receptor (IL2-R) complex. Additionally, we have shown that there is increased AKT protein expression in iTregs versus conventional T cell populations that does not correlate with the TCR-induced increase in its active (phosphorylated) form. This blockage appears to be due to an imbalance of kinase to phosphatase activity in iTregs with a specific TCR-induced inhibition of mTOR activity. We have also demonstrated that AKT accumulation in iTregs leads to its physical association with SMAD3, suggesting a novel, non-enzymatic function of AKT through transcription factor inhibition. This study sheds light on the reciprocal cross talk between the IL-2R and TCR signaling pathways and uncovers the mechanism of AKT blockade in primary human iTregs, thus opening novel avenues for therapeutic manipulation
6

Etude de l'implication des cellules microgliales et de l'α-synucleine dans la maladie neurodégénérative de Parkinson / Microglia and α-synuclein implication in Parkinson's disease

Moussaud, Simon 25 February 2011 (has links)
Les maladies neurodégénératives liées à l’âge, telle celle de Parkinson, sont un problème majeur de santé publique. Cependant, la maladie de Parkinson reste incurable et les traitements sont très limités. En effet, les causes de la maladie restent encore mal comprises et la recherche se concentre sur ses mécanismes moléculaires. Dans cette étude, nous nous sommes intéressés à deux phénomènes anormaux se produisant dans la maladie de Parkinson : l’agrégation de l’α-synucléine et l’activation des cellules microgliales. Pour étudier la polymérisation de l’α-synucléine, nous avons établi de nouvelles méthodes permettant la production in vitro de différents types d’oligomères d’α-synucléine. Grâce à des méthodes biophysiques de pointe, nous avons caractérisé ces différents oligomères à l’échelle moléculaire. Puis nous avons étudié leurs effets toxiques sur les neurones. Ensuite, nous nous sommes intéressés à l’activation des microglies et en particulier à leurs canaux potassiques et aux changements liés au vieillissement. Nous avons identifié les canaux Kv1.3 et Kir2.1 et montré qu’ils étaient impliqués dans l’activation des microglies. En parallèle, nous avons établi une méthode originale qui permet l’isolation et la culture de microglies primaires issues de cerveaux adultes. En comparaison à celles de nouveaux-nés, les microglies adultes montrent des différences subtiles mais cruciales qui soutiennent l’hypothèse de changements liés au vieillissement. Globalement, nos résultats suggèrent qu’il est possible de développer de nouvelles approches thérapeutiques contre la maladie de Parkinson en modulant l’action des microglies ou en bloquant l’oligomérisation de l’ α-synucléine. / Age-related neurodegenerative disorders like Parkinson’s disease take an enormous toll on individuals and on society. Despite extensive efforts, Parkinson’s disease remains incurable and only very limited treatments exist. Indeed, Parkinson’s pathogenesis is still not clear and research on its molecular mechanisms is ongoing. In this study, we focused our interest on two abnormal events occurring in Parkinson’s patients, namely α-synuclein aggregation and microglial activation. We first investigated α-synuclein and its abnormal polymerisation. For this purpose, we developed novel methods, which allowed the in vitro production of different types of α-synuclein oligomers. Using highly sensitive biophysical methods, we characterised these different oligomers at a single-particle level. Then, we tested their biological effects on neurons. Afterwards, we studied microglial activation. We concentrated our efforts on two axes, namely age-related changes in microglial function and K+ channels in microglia. We showed that Kv1.3 and Kir2.1 K+ channels are involved in microglial activation. In parallel, we developed a new approach, which allows the effective isolation and culture of primary microglia from adult mouse brains. Adult primary microglia presented subtle but crucial differences in comparison to microglia from neo-natal mice, confirming the hypothesis of age-related changes of microglia. Taken together, our results support the hypotheses that microglial modulation or inhibition of α-synuclein oligomerisation are possible therapeutic strategies against Parkinson's disease.
7

Etude de l'implication des cellules microgliales et de l'α-synucleine dans la maladie neurodégénérative de Parkinson

Moussaud, Simon 25 February 2011 (has links) (PDF)
Les maladies neurodégénératives liées à l'âge, telle celle de Parkinson, sont un problème majeur de santé publique. Cependant, la maladie de Parkinson reste incurable et les traitements sont très limités. En effet, les causes de la maladie restent encore mal comprises et la recherche se concentre sur ses mécanismes moléculaires. Dans cette étude, nous nous sommes intéressés à deux phénomènes anormaux se produisant dans la maladie de Parkinson : l'agrégation de l'α-synucléine et l'activation des cellules microgliales. Pour étudier la polymérisation de l'α-synucléine, nous avons établi de nouvelles méthodes permettant la production in vitro de différents types d'oligomères d'α-synucléine. Grâce à des méthodes biophysiques de pointe, nous avons caractérisé ces différents oligomères à l'échelle moléculaire. Puis nous avons étudié leurs effets toxiques sur les neurones. Ensuite, nous nous sommes intéressés à l'activation des microglies et en particulier à leurs canaux potassiques et aux changements liés au vieillissement. Nous avons identifié les canaux Kv1.3 et Kir2.1 et montré qu'ils étaient impliqués dans l'activation des microglies. En parallèle, nous avons établi une méthode originale qui permet l'isolation et la culture de microglies primaires issues de cerveaux adultes. En comparaison à celles de nouveaux-nés, les microglies adultes montrent des différences subtiles mais cruciales qui soutiennent l'hypothèse de changements liés au vieillissement. Globalement, nos résultats suggèrent qu'il est possible de développer de nouvelles approches thérapeutiques contre la maladie de Parkinson en modulant l'action des microglies ou en bloquant l'oligomérisation de l' α-synucléine.

Page generated in 0.0437 seconds