11 |
L-functions in Number TheoryZhang, Yichao 23 February 2011 (has links)
As a generalization of the Riemann zeta function, L-function has become one of the central objects in Number Theory. The theory of L-functions, which produces a large family of consequences and conjectures in a unified way, concerns their zeros and poles, functional equations, special values and the connections between objects in different fields. Although most generalizations are largely conjectural, there are many existing results that provide us the evidence.
In this thesis, we shall consider some L-functions and look into some problems mentioned above. More explicitly, for the L-functions associated to newforms of fixed square-free level, we will consider an average version of the fourth moments problem. The final bound is proven by considering definite rational quaternion algebras and divisor functions in them, generalizing Maass Correspondence Theorem and one of Duke's results and eventually applying the solution to Basis Problem.
We then consider the problem of expressing the central value at 1/2 of the Rankin-Selberg L-function associated to two newforms in terms of the Pertersson inner product, where one of the newforms is twisted by the derivative of some Eisenstein series.
Finally, we consider the Artin L-functions attached to irreducible $4$-dimensional $S_5$-Galois representations and deal with the modularity problem.
One sufficient condition on the modularity is given, which may help to find an affirmative example for
Strong Artin Conjecture in this case.
|
12 |
L-functions in Number TheoryZhang, Yichao 23 February 2011 (has links)
As a generalization of the Riemann zeta function, L-function has become one of the central objects in Number Theory. The theory of L-functions, which produces a large family of consequences and conjectures in a unified way, concerns their zeros and poles, functional equations, special values and the connections between objects in different fields. Although most generalizations are largely conjectural, there are many existing results that provide us the evidence.
In this thesis, we shall consider some L-functions and look into some problems mentioned above. More explicitly, for the L-functions associated to newforms of fixed square-free level, we will consider an average version of the fourth moments problem. The final bound is proven by considering definite rational quaternion algebras and divisor functions in them, generalizing Maass Correspondence Theorem and one of Duke's results and eventually applying the solution to Basis Problem.
We then consider the problem of expressing the central value at 1/2 of the Rankin-Selberg L-function associated to two newforms in terms of the Pertersson inner product, where one of the newforms is twisted by the derivative of some Eisenstein series.
Finally, we consider the Artin L-functions attached to irreducible $4$-dimensional $S_5$-Galois representations and deal with the modularity problem.
One sufficient condition on the modularity is given, which may help to find an affirmative example for
Strong Artin Conjecture in this case.
|
13 |
The Distribution of Values of Logarithmic Derivatives of Real L-functionsMourtada, Mariam Mohamad 09 August 2013 (has links)
We prove in this thesis three main results, involving the distribution of values of $L'/L(\sigma,\chi_D)$,$D$ being a fundamental discriminant, and $\chi_D$ the real character attached to it. We prove two Omega theorems for $L'/L(1,\chi_D)$, compute the moments of $L'/L(1,\chi_D)$, and construct under GRH, for each $\sigma>1/2$,a density function ${\cal Q}_\sigma$ such that
\[\#\{D ~~\text{fundamental discriminants, such that}~~ |D|\leq Y,~~ \text{and}~~ \alpha \leq L'/L(\sigma,\chi_D)\leq \beta \}
\]\[ \sim \frac{6}{\pi^2\sqrt{2\pi}} Y \int_\alpha^\beta {\cal Q}_\sigma(x)dx .
\]
|
14 |
The Distribution of Values of Logarithmic Derivatives of Real L-functionsMourtada, Mariam Mohamad 09 August 2013 (has links)
We prove in this thesis three main results, involving the distribution of values of $L'/L(\sigma,\chi_D)$,$D$ being a fundamental discriminant, and $\chi_D$ the real character attached to it. We prove two Omega theorems for $L'/L(1,\chi_D)$, compute the moments of $L'/L(1,\chi_D)$, and construct under GRH, for each $\sigma>1/2$,a density function ${\cal Q}_\sigma$ such that
\[\#\{D ~~\text{fundamental discriminants, such that}~~ |D|\leq Y,~~ \text{and}~~ \alpha \leq L'/L(\sigma,\chi_D)\leq \beta \}
\]\[ \sim \frac{6}{\pi^2\sqrt{2\pi}} Y \int_\alpha^\beta {\cal Q}_\sigma(x)dx .
\]
|
15 |
p-adic deformation of Shintani cyclesShahabi, Shahab. January 2008 (has links)
No description available.
|
16 |
Moments of automorphic L-functions at special pointsBeckwith, Alexander Lu 10 September 2020 (has links)
No description available.
|
17 |
On Dirichlet's L-functions.January 1982 (has links)
Fung Yiu-cho. / Bibliography: leaves 93-114 / Thesis (M.Phil.)--Chinese University of Hong Kong, 1982
|
18 |
Survey on Birch and Swinnerton-Dyer conjecture.January 1992 (has links)
by Leung Tak. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1992. / Includes bibliographical references (leaves 76-77). / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Elliptic curve --- p.4 / Chapter 2.1 --- Elliptic Curve in Normal Form --- p.4 / Chapter 2.2 --- Geometry and Group Law --- p.7 / Chapter 2.3 --- Special Class of Elliptic Curves --- p.10 / Chapter 2.4 --- Mordell's Conjecture --- p.12 / Chapter 2.5 --- Torsion Group --- p.14 / Chapter 2.6 --- Selmer Group and Tate-Shafarevitch. Group --- p.16 / Chapter 2.7 --- Endomorphism of Elliptic Curves --- p.19 / Chapter 2.8 --- Formal Group over Elliptic Curves --- p.23 / Chapter 2.9 --- The Finite Field Case --- p.26 / Chapter 2.10 --- The Local Field Case --- p.27 / Chapter 2.11 --- The Global Field Case --- p.29 / Chapter 3 --- Class Field Theory --- p.31 / Chapter 3.1 --- Valuation and Local Field --- p.31 / Chapter 3.2 --- Unramified and Totally Ramified Extensions and Their Norm Groups --- p.35 / Chapter 3.3 --- Formal Group and Abelian Extension of Local Field --- p.36 / Chapter 3.4 --- Abelian Extenion and Norm Residue Map --- p.41 / Chapter 3.5 --- Finite Extension and Ramification Group --- p.43 / Chapter 3.6 --- "Hilbert Symbols [α, β]w and (α, β)f" --- p.46 / Chapter 3.7 --- Adele and Idele --- p.48 / Chapter 3.8 --- Galois Extension and Kummer Extension --- p.50 / Chapter 3.9 --- Global Reciprocity Law and Global Class Field --- p.52 / Chapter 3.10 --- Ideal-Theoretic Formulation of Class Field Theory --- p.57 / Chapter 4 --- Hasse-Weil L-function of elliptic curves --- p.60 / Chapter 4.1 --- Classical Zeta Functions and L-functions --- p.60 / Chapter 4.2 --- Congruence Zeta Function --- p.63 / Chapter 4.3 --- Hasse-Weil L-function and Birch-Swinnerton-Dyer Conjecture --- p.64 / Chapter 4.4 --- A Sketch of the Proof from the Joint Paper of Coates and Wiles --- p.67 / Chapter 4.5 --- The works of other mathematicians --- p.73
|
19 |
On zeros of cubic L-functionsXia, Honggang, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 31-32).
|
20 |
Special Values of the Goss L-function and Special PolynomialsLutes, Brad Aubrey 2010 August 1900 (has links)
Let K be the function field of an irreducible, smooth projective curve X defined over Fq. Let [lemniscate] be a fixed point on X and let A [a subset of or is equal to] K be the Dedekind domain of functions which are regular away from [lemniscate]. Following the work of Greg Anderson, we define special polynomials and explain how they are used to define an A-module (in the case where the class number of A and the degree of [lemniscate] are both one) known as the module of special points associated to the Drinfeld A-module [rho]. We show that this module is finitely generated and explicitly compute its rank. We also show that if K is a function field such that the degree of [lemniscate] is one, then the Goss L-function, evaluated at 1, is a finite linear combination of logarithms evaluated at algebraic points. We conclude with examples showing how to use special polynomials to compute special values of both the Goss L-function and the Goss zeta function.
|
Page generated in 0.0906 seconds