• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 183
  • 72
  • 33
  • 17
  • 16
  • 12
  • 9
  • 8
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 392
  • 72
  • 63
  • 59
  • 55
  • 47
  • 38
  • 36
  • 33
  • 31
  • 27
  • 24
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Isolation and characterization of the leftward promoter of bacteriophage lambda

Horn, Glenn T. January 1980 (has links)
Thesis--University of Wisconsin--Madison. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
12

Studies on the mechanism of red-mediated recombination in bacteriophage lambda

Makin, Gordon James Vance, January 1976 (has links)
Thesis--Wisconsin. / Includes bibliographical references (leaves 55-56).
13

Sequence organization of lambdoid bacteriophage origins of DNA replication

Moore, David Dudley. January 1979 (has links)
Thesis--University of Wisconsin--Madison. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
14

Messung der transversalen L-Polarisation [Lambda-Polarisation] mit dem HERA-B-Detektor

Böcker, Matthias. January 2004 (has links) (PDF)
Siegen, Universiẗat, Diss., 2004.
15

Physiopathologie de la pneumonie à Pseudomonas aeruginosa : implication des cellules épithéliales alvéolaires via l'IL-22 et l'échappement immunitaire / Physiopathology of Pseudomonas aeruginosa pneumonia : involvement of alveolar epithelial cells through IL-22 and role of the immune escape

Besbes, Anissa 02 July 2018 (has links)
Pseudorrwnas aeruginosa (PA) est un pathogène opportuniste responsable de pneumonies nosocomiales chez les patients immunodéprimés. L'émergence des souches multirésistantes rend les traitements antibiotiques inefficaces nécessitant la mise en place de thérapeutiques alternatives. Les cellules épithéliales alvéolaires (AEC) constituent la première barrière physique que rencontre PA et ces cellules jouent un rôle important dans la réponse innée suite à l'infection. L'interleukine(IL)-22 est une cytokine dont l'intérêt thérapeutique est prometteur de par son action de protection des épithéliums. Le renforcement de la barrière épithéliale par le traitement à l'IL-22 a montré des effets protecteurs contre l'infection à PA dans un modèle murin de pneumonie. Nous avons caractérisé l'action in vitro de l'IL-22 au cours de l'infection à PA en utilisant une lignée transformée d' AEC de type II et nous avons démontré que cette cytokine potentialise l'expression d'interférons lambda (IFN°À) connus pour être bénéfiques au cours des infections virales. L'administration in vivo d'IFN-À dans un modèle murin de pneumonie aiguë à PA montre une amélioration significative de la pathologie accompagnée d'une réduction du recrutement de polynucléaires neutrophiles. PA est un pathogène capable d'échappement immunitaire lors de la mise en place de la réponse de l'hôte au cours de l'infection. En développant ex vivo un modèle de granulome à PA, nous avons observé une augmentation d'expression des 1,. molécules PD-Ll sur les monocytes. Ceci suggère une implication de la voie PD-I/PD-Ll dans l'épuisement lymphocytaire au cours de l'infection à PA. / Pseudorrwnas aeruginosa (PA) is an opportunistic pathogen, and a leading cause of nosocomial infections, Emergence of multidrug resistant strains alter antibiotic efficacy and requires the development of alternative therapeutics. Alveolar epithelial cells (AEC) are the first line of defence against PA and play a crucial role in initiating immune response following infection. Interleukin (IL)-22 is cytokine recently discovered acting specifically onto epithelial cells. IL-22 is a promising therapeutic when considering its epithelium protective action during infections. Reinforcement of epithelial barrier by IL-22 treatment showed protective effects against PA in a murine pneumonia model. We here characterized the in vitro IL-22 effects during PA infection by using transformed cell line of AEC type II and showed enhanced Interferons lambda (IFN-À) production, which are known to be protective against viral infection. In vivo IFN-À administration in a murine model of acute PA pneumonia showed significant pathology improvement and dampened neutrophil recruitment. PA is a pathogen able to interfere and to escape the host response during infection. To study the mechanisms of immune escape and subversion of PA during host response, we developed an in vitro granuloma model following PA infection. We showed a significant induction of PD-LI expression in monocytes suggesting a PD- I/PD-LI involvement in T cells exhaustion during PA infection.
16

The Change in Lambda Invariants for Cyclic p-Extensions of Z(p)-Fields

Schettler, Jordan Christian January 2012 (has links)
The well-known Riemann-Hurwitz formula for Riemann surfaces (or the corresponding formulas of the same name for curves/function fields) is used in genus computations. In 1979, Yûji Kida proved a strikingly analogous formula in [Kid80] for p-extensions of CM-fields (p an odd prime) which is similarly used to compute Iwasawa λ -invariants. However, the relationship between Kida’s formula and the statement for surfaces is not entirely clear since the proofs are of a very different flavor. Also, there were a few hypotheses for Kida’s result which were not fully satisfying; for example, Kida’s formula requires CM-fields rather than more general number fields and excludes the prime p = 2. Around a year after Kida’s result was published, Kenkichi Iwasawa used Galois cohomology in [Iwa81] to establish a more general formula (about representations) that did not exclude the prime p = 2 nor need the CM-field assumption. Moreover, Kida’s formula follows as a corollary from Iwasawa’s formula. We’ll prove a slight generalization of Iwasawa’s formula and use this to give a new proof of a result of Kida in [Kid79] and Ferrero in [Fer80] which computes λ-invariants in imaginary quadratic extensions for the prime p = 2. We go on to produce special generalizations of Iwasawa’s formula in the case of cyclic p-extensions; these formulas can be realized as statements about Q(p)-representations, and, in the cases of degree p or p², about p-adic integral representations. One upshot of these formulas is a vanishing criterion for λ-invariants which generalizes a result of Takashi Fukuda et al. in [FKOT97]. Other applications include new congruences and inequalities for λ-invariants that cannot be gleaned from Iwasawa’s formula. Lastly, we give a scheme theoretic approach to produce a general formula for finite, separable morphisms of Dedekind schemes which simultaneously encompasses the classical Riemann-Hurwitz formula and Iwasawa’s formula.
17

Identification and characterization of a new promoter in nin 5 mutation of bacteriophage lambda.

January 1974 (has links)
Thesis (M. Ph.)--Chinese University of Hong Kong. / Bibliography: 101-113 l.
18

The atomic lambda-mu calculus

He, Fanny January 2018 (has links)
A cornerstone of theoretical computer science is the Curry-Howard correspondence where formulas are types, proofs are programs, and proof normalization is computation. In this framework we introduce the atomic λμ-calculus, an interpretation of a classical deep inference proof system. It is based on two extensions of the λ-calculus, the λμ-calculus and the atomic λ-calculus. The former interprets classical logic, featuring continuation-like constructs, while the latter interprets intuitionistic deep inference, featuring explicit sharing operators. The main property of the atomic λ-calculus is reduction on individual constructors, derived from atomicity in deep inference. We thus work on open deduction, a deep inference formalism, allowing composition with connectives and with derivations, and using the medial rule to obtain atomicity. One challenge is to find a suitable formulation for deriving a computational interpretation of classical natural deduction. A second design challenge leads us to work on a variant of the λμ-calculus, the ΛμS-calculus, adding streams and dropping names. We show that our calculus has preservation of strong normalization (PSN), confluence, fully-lazy sharing, and subject reduction in the typed case. There are two challenges with PSN. First, we need to show that sharing reductions strongly normalize, underlining that only β, μ-reductions create divergence. Our proof is new and follows a graphical approach to terms close to the idea of sharing. Second, infinite reductions of the atomic calculus can appear in weakenings, creating infinite atomic paths corresponding to finite ΛμS-paths. Our solution is to separate the proof into two parts, isolating the problem of sharing from that of weakening. We first translate into anintermediate weakening calculus, which unfolds shared terms while keeping weakened ones, and preserves infinite reductions. We then design a reduction strategy preventing infinite paths from falling into weakenings.
19

The partial lambda calculus

Moggi, Eugenio January 1988 (has links)
This thesis investigates various formal systems for reasoning about partial functions or partial elements, with particular emphasis on lambda calculi for partial functions. Beeson's (intuitionistic) logic of partial terms (LPT) is taken as the basic formal system and some of its metamathematical properties are established (for later application). Three different flavours of Scott's logic of partial elements (LPE) are considered and it is shown that they are conservative extensions of LPT. This result, we argue, corroborates the choice of LPT as the basic formal system. Variants of LPT are introduced for reasoning about partial terms with a restriction operator ↾, monotonic partial functions (monLPT), lambda-terms λ_p-calculus) and λY-terms λ_pμY-calculus). The expressive powers of some (in)equational fragments are compared in LPT and its variants. Two equational formal systems are related to some of the logics above: Obtulowicz's p-equational logic is related to LPT+↾ and Plotkin's λ_v-calculus is related to one flavour of LPE. The deductive powers of LPT and its variants are compared, using various techniques (among them logical relations). The main conclusion drawn from this comparison is that there are four different lambda calculi for partial functions: intuitionistic or classical, partial or monotonic partial functions. An (in)equational presentation of the intuitionistic lambda calculus for (monotonic) partial functions is given as an extension of p-equational logic. We conjecture that there is no equational presentation of the classical λ_p-calculus. Via a special kind of diamond property, the (in)equational formal system is characterized in terms of β-reduction for partial functions and some decidability problems are solved.
20

Définitions par réécriture dans le lambda-calcul confluence, réductibilité et typage /

Riba, Colin Kirchner, Claude Blanqui, Frédéric January 2007 (has links) (PDF)
Thèse de doctorat : Informatique : INPL : 2007. / Titre provenant de l'écran-titre.

Page generated in 0.0218 seconds