• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Role of Pre-mRNA Splicing and Splicing-Related Proteins in the Cold Acclimation Induced Adjustment of Photosynthesis and the Acquisition of Freezing Tolerance in Arabidopsis Thaliana

Rosembert, Marc January 2017 (has links)
This thesis evaluated the role of Serine/Arginine-rich proteins, also known as SR proteins, in addition to LAMMER kinases in the cold acclimation response using Brassica napus and Arabidopsis thaliana. Transcription profile analyses of SR and LAMMER kinase genes in Brassica napus and BnCBF overexpressor lines showed that exposure to low temperatures led to increased transcript levels for nine SR genes and two kinases. BnCBF overexpression was found to exacerbate this response. This was associated with increases in SR protein abundance and phosphorylation status, suggesting that SR proteins play an essential role in cold acclimation. These findings prompted further studies to assess the role of SR proteins and kinases in the cold acclimation induced adjustment of photosynthesis, the acquisition of freezing tolerance and the transcriptional profile of CBF, SPS and COR genes, which play an important role in the transcriptional cascade allowing plants to undergo cold acclimation. Using Arabidopsis loss-of-function mutants of SR proteins and AME3 LAMMER kinase, it was shown that At-RSZ22 and At-SR45 are indispensable in the regulation of photosynthesis under non-acclimated and cold acclimation conditions. At-RSZ22a, At-SCL30 and At-RS41 were then proposed to play a crucial role in the cold acclimation induced adjustment of photosynthetic performance. Moreover, the deletion of At-AME3 kinase not only jeopardized the cold acclimation induced adjustment of photosynthetic performance, but also the acquisition of freezing tolerance. This was associated with attenuation of the transcription profile of key cold responsive genes and protein abundance of COR15 A/B and dehydrins. These findings prompted further physiological characterization of ame3 mutants, and the elucidation of Serine/Arginine-rich proteins capable of interacting with this LAMMER kinase of interest. Under cold stress and acclimation conditions, the deletion of At-AME3 LAMMER kinase impeded Photosystem I physiology and state-1 state-2 transitions. These findings were associated with decreases in Photosystem II and Photosystem I protein abundance. Yeast 2-hybrid assays showed that six SR proteins are capable of physically interacting with AME3. Taken together, the results of this study demonstrate that At-RSZ22 and At-SR45 are essential in the photosynthetic performance of Arabidopsis, that At-RSZ22a, At-SCL30 and At-RS41 play an essential role in the cold acclimation induced recovery of photosynthetic performance, and that At-AME3 plays an essential role in the cold acclimation response.
2

Rôle des kinases LAMMER et des phosphatases PTP1B/PTP61F dans la régulation des voies de signalisation médiées par l'insuline / Role of LAMMER kinases and PTP1B/PTP61F phosphases in the regulation of pathways mediated by insulin

Tchankouo Nguetcheu, Stéphane 16 November 2012 (has links)
Le diabète de type 2 et le cancer représentent des problèmes majeurs de santé publique. Une cible thérapeutique importante de ces affections est la protéine tyrosine phosphatase PTP1B. Cette dernière est connue pour réguler la voie de l’insuline en déphosphorylant le récepteur de l’insuline, IR ou le substrat du récepteur de l’insuline, IRS. Cependant lesfonctions de PTP1B, le mécanisme par lequel cette phosphatase est régulée restent très ou pas connus. Deux études ont notamment décrites des effets opposés de l’activité de PTP1B suite à la phosphorylation sur résidu de Ser50 de PTP1B par CLK1/CLK2, des kinases LAMMER d’une part et AKT d’autre part. AKT a aussi été montré de phosphoryler la kinase LAMMER CLK1. Par ailleurs, le rôle de PTP1B dans la régulation de la voie Ras/MAPK et donc dans le cancer est un sujet très controversé. L’objectif premier de ce travail de thèse a été d’analyser, le rôle de Ptp61F (l’orthologue de Drosophile de PTP1B) dans la voie de l’insuline de Drosophile, l’interaction entre la phosphatase et la kinase LAMMER de Drosophile, DOA, le rôle de cette phosphatase dans la voie RAS/MAPK. Pour se faire, nous avons utilisé la puissance génétique de laDrosophile pour générer un mutant du gène Ptp61F qui a été caractérisé et son rôle dans les voies de signalisation a été étudié. Cette étude a montrée que, Ptp61F interagit avec IR comme PTP1B chez les mammifères. Elle montre que Ptp61F régule les acteurs clés de la voie de l’insuline Pi3K/Akt. Elle a également montrée que Ptp61F pouvait réguler les fonctions du gène de la kinase LAMMER de Drosphile, Doa. Elle montre enfin que Ptp61F interagit avec nombreuses composantes de la voie RASMAPK de Drosophile (Egfr, Ras, rl (ERK humain)) en réprimant la fonction de chacun de ces gènes et que Rl serait un substrat direct de PTP61F. Les informations selon lesquelles, Ptp61F interagit avec Akt et le gène de la kinaseLAMMER de Drosophile, Doa ont été utilisées dans la deuxième étude pour montrer le rôle que les kinases LAMMER (notamment CLK2, Cdc-like kinase 2) pouvaient jouer dans la voie de signalisation de l’insuline au niveau moléculaire en utilisant les cellules de neuroblastome humain SH-SY5Y. Il en ressort que la kinase CLK2 joue un rôle importantdans cette voie de signalisation. CLK2 est induit par l’insuline et son expression augmente avec le temps. PTP1B interagit in vitro et in vivo avec CLK2. La surexpression de CLK2 induit la baisse de la phosphorylation de AKT par un mécanisme qui pourrait passer par PTP1B, puisque in vitro, CLK2 phosphoryle PTP1B et ce dernier interagit avec AKT in vivo. C’est le résidu de Ser50 de PTP1B qui est phosphorylé et cette phoshphorylation réprime l’activité de PTP1B in vitro. On n’observe cependant pas AKT capable de phosphoryler PTP1B in vitro suggérant que la phosphorylation de PTP1B par AKT serait dépendante du contexte cellulaire. / Type 2 diabetes and cancer represent the major public health problems. One important therapeutic target for these pathologies is the protein tyrosin phosphatase PTP1B. The phosphatase is known to negatively regulates the insulin signaling pathway by dephosphorylating the insulin receptor, IR or the insulin receptor substrate, IRS. However,PTP1B functions and its regulation mechanism remain poorly known. Two studies has notably described opposite effects of PTP1B activity following phosphorylation of its Ser50 residue either by CLK1/CLK2, LAMMER kinases or by AKT. Furthermore, AKT, a main insulin signaling pathway component, has been shown to phosphorylate the LAMMER kinaseCLK1 following insulin stimulation. In addition, the role of PTP1B in the regulation of the RAS/MAPK signaling pathway and hence in cancer is a very controversial subject. The first objective of this work was to analyse, the role of Ptp61F (the Drosophila ortholog of human PTP1B) in the Drosophila insulin pathway, the interaction between the phosphatase and the Drosophila LAMMER kinase gene, Doa, the role of Ptp61F in the RAS/MAPK signaling pathway. To achieve these, we took advantage of the genetic powerful of Drosophila to generate a Ptp61F gene mutant which has been characterized and its role in signaling pathways has been studied. This study showed that Ptp61F interacts with IR like PTP1B in mammals. It shows that Ptp61F regulates key components of insulin signaling pathway Pi3K/Akt. It also shows that Ptp61F is able to regulate the Drosophila LAMMER kinase gene, Doa. Finally, we noted that Ptp61F interacts by inhibiting the activity of severalcomponent of the RAS/MAPK signaling pathway of Drosophila (Egfr, Ras, rl (human ERK)) and conclude that Rl coud be a direct substrate of PTP61F. The data showing that Ptp61F interacts with Akt and the Drosophila LAMMER kinase gene, Doa, were the basis for the second study in order to show the role that the mammal LAMMER kinase CLK2 (Cdc-like kinase 2) could play in the insulin signaling pathway at molecular level using the human neuroblastoma cell line SH-SY5Y. From this second study, we show that CLK2 play an important role in insulin signaling. CLK2 is induced by insulin and its expression increases with time. PTP1B interacts in vivo and in vitro with CLK2. Overexpression of CLK2 impairs AKT phosphorylation by a mechanism which could involved PTP1B, since in vitro, CLK2 phosphorylates PTP1B and the latter interacts withAKT in vivo. It is the Ser50 residue of PTP1B being phosphorylated by CLK2 and this phosphorylation event represses PTP1B activity in vitro. AKT cannot phosphorylates PTP1B in vitro, suggesting that the phosphorylation of PTP1B by AKT could be cellular environment dependant.

Page generated in 0.0507 seconds