361 |
Solution Of One-dimensional Transient Flow In Fractured Aquifers By Numerical Laplace Transform InversionDundar, Serdar 01 November 2005 (has links) (PDF)
Laplace transform step-response functions are presented for one dimensional transient flow in fractured semi-infinite & / finite aquifers. Unsteady flow in the aquifer resulting from a constant discharge pumped from the stream is considered. Flow is one-dimensional, perpendicular to the stream in the confined aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width. The Laplace domain solutions are numerically inverted to the real-time domain with the Stehfest (1970) algorithm. During the course of the thesis a simple computer code is written to handle the algorithm and the code is verified by applying it to the one-dimensional transient flow in a semi-infinite homogeneous aquifer problem which can be solved analytically to crosscheck with the numerical results.
|
362 |
Some innovative numerical approaches for pricing American optionsZhang, Jin. January 2007 (has links)
Thesis (M.Sc.-Res.)--University of Wollongong, 2007. / Typescript. Includes bibliographical references: leaf 77-80.
|
363 |
Symetrie CR sub-Laplac / Symmetries of the CR sub-LaplacianVlasáková, Zuzana January 2010 (has links)
Title: Symmetries of the CR sub-Laplacian Author: Zuzana Vlasáková Department: Charles University Institute of Mathematics Supervisor: Prof. RNDr. Vladimír Souček, DrSc. Author's e-mail address: zuzana.kasarova@email.cz Supervisor's e-mail address: soucek@karlin.mff.cuni.cz Abstract: The aim of this work is to characterize the vector space of symme- try operators of the CR sub-Laplacian. To do this, we define a CR structure on some distinguished submanifold of Cn+1 (it is in fact the big cell in the CR sphere) and write down the CR sub-Laplacian on it. We also define the symmetries of the CR sub-Laplacian in general and using the ambient con- struction, which we introduce in the sequel, we construct all of them. Keywords: CR geometry, CR sub-Laplacian, symmetries of differential op- erator. 1
|
364 |
Multi-user Diversity Systems with Application to Cognitive RadioJanuary 2012 (has links)
abstract: This thesis aims to investigate the capacity and bit error rate (BER) performance of multi-user diversity systems with random number of users and considers its application to cognitive radio systems. Ergodic capacity, normalized capacity, outage capacity, and average bit error rate metrics are studied. It has been found that the randomization of the number of users will reduce the ergodic capacity. A stochastic ordering framework is adopted to order user distributions, for example, Laplace transform ordering. The ergodic capacity under different user distributions will follow their corresponding Laplace transform order. The scaling law of ergodic capacity with mean number of users under Poisson and negative binomial user distributions are studied for large mean number of users and these two random distributions are ordered in Laplace transform ordering sense. The ergodic capacity per user is defined and is shown to increase when the total number of users is randomized, which is the opposite to the case of unnormalized ergodic capacity metric. Outage probability under slow fading is also considered and shown to decrease when the total number of users is randomized. The bit error rate (BER) in a general multi-user diversity system has a completely monotonic derivative, which implies that, according to the Jensen's inequality, the randomization of the total number of users will decrease the average BER performance. The special case of Poisson number of users and Rayleigh fading is studied. Combining with the knowledge of regular variation, the average BER is shown to achieve tightness in the Jensen's inequality. This is followed by the extension to the negative binomial number of users, for which the BER is derived and shown to be decreasing in the number of users. A single primary user cognitive radio system with multi-user diversity at the secondary users is proposed. Comparing to the general multi-user diversity system, there exists an interference constraint between secondary and primary users, which is independent of the secondary users' transmission. The secondary user with high- est transmitted SNR which also satisfies the interference constraint is selected to communicate. The active number of secondary users is a binomial random variable. This is then followed by a derivation of the scaling law of the ergodic capacity with mean number of users and the closed form expression of average BER under this situation. The ergodic capacity under binomial user distribution is shown to outperform the Poisson case. Monte-Carlo simulations are used to supplement our analytical results and compare the performance of different user distributions. / Dissertation/Thesis / M.S. Electrical Engineering 2012
|
365 |
Resolução dos modelos unidimensional e bidimensional de solidificação de metais puros e ligas eutéticas através da transformada de LaplaceKozakevicius, Alice de Jesus January 1994 (has links)
Este trabalho tem como objetivo apresentar uma solução em forma fechada para uma modelagem, tanto unidimensional quanto bidimensional, do processo de solidificação. Esta modelagem, proposta por Kanetkar et al, aborda a solidificação em termos de dois processos: o macroscópico e o microscópico. O primeiro descreve a transferência de calor do metal para o molde e do sistema metal-molde para o meio ambiente; já. o segundo descreve a formação e o desenvolvimento de grãos no metal durante sua mudança de fase. O acoplamento desses processos se dá. através da inclusão do termo fonte, representante da cinética de solidificação, na equação de conservação de energia para condução do calor. Ao invés de utilizar o método de diferenças finitas na resolução das equações do modelo unidimensional, aplica-se a transformada de Laplace com respeito à variável t e resolve-se analiticamente, via software REDUCE, o sistema de equações gerado pelas condições de contorno para a obtenção dos coeficientes da solução transformada. No caso bidimensional, utiliza-se um método nodal para transformar o problema novamente em uma modelagem unidimensional. Integram-se as equações em uma das direções, no caso, em z, passando-se a calcular o fluxo médio de calor. Uma extensão possfvel é subdividir o domÍnio de integração e calcular o fluxo médio em cada uma das novas regiões interligadas através de condições de contorno. / The modeling of solidification, proposed by Ka.netkar et al, treats the solidification as a process involving ma.croscopic and microscopic íeatures. The ma.croscopic aspect desenhes the heat transfer from the metal to the cylindric body and from the system "metal-mold" to the surroundings. The second describes the formation and development of grains in the metal during its fase changing. The coupling of these two features of the process is ma.de with the inclusion of a source term, tha.t representa the nucleation, in the conservation equation for the heat transíer. lnstead of using finite diference methods for solving the equations of the unidi.mentiona. l model, Laplace transform with respect to the temporal va.riable ( t) is applied in the equations, and for solving analytically the system of equations generated by the boundary conditions from the model, the software REDUCE is used. In the two dimentional model is used a nodal method to transform the problem aga.in in a unidimentional modeling. The equations are integrated in a choosen direction, here z. After that they were solved for a mean heat flux. lt is aslo possible to divide the domain of integration and to calculate the mean heat flux in ea.ch new region considering that ea.ch one is connected with the others by new boundary conditions.
|
366 |
Um algoritmo para o cálculo dos valores da matriz LTSNDenardi, Vania Bolzan January 1997 (has links)
Apresentamos um novo algoritmo, baseado no algoritmo de inversão de matrizes de Leverrier-Fadeev, para extrair os autovalores e os coeficientes do polinômio característico da matriz (si+ A), não-simétrica, que surge em conexão com o método LTSN - o qual utiliza a transformada de Laplace para a solução da equação de ordenadas discretas S N. O algoritmo baseia-se em propriedades exibidas pela matriz, cuja estrutura e valores dos elementos fazem com que todos os seus autovalores sejam reais e simétricos em relação a zero. Evidências experimentais demonstram que, os autovalores do bloco superior esquerdo da matriz, de dimensão N /2, entrelaçam os autovalores negativos de -A. O algoritmo foi implementado em FORTRAN 77, usando algumas rotinas do BLAS e do LAPACK, e estruturado de forma a explorar a estrutura da matriz, permitindo efetuar os cálculos necessários em um menor tempo e com um menor gasto de menória. No entanto, apesar de ganhos obtidos em comparação com o algoritmo usualmente utilizado, proposto por Barichello, nossos experimentos demonstram a instabilidade numérica do algoritmo de Leverrier-Fadeev. / We present a new algorithm to compute the eigenvalues and the coefficients o f the characteristic polynomial o f a nonsymmetric matrix o f the form (sI+ A), which arises in connection with the LTSN method for the solution of thc discrete ordinates equations S N. Our algorithm is a modifi.cation of the matrix inversion Leverrier-Fadeev algorithm, exploiting the pattern existent in the matrix -A and some properties exhibited by its eigenvalues, which have been determined experimentally. More specifi.cally, its eigenvalues alllie on the real axis and are symmetrically distributed around zero. Also, -A has a block structure and the eigenvalues of the left-hand superior block interleave the negative eigenvalues of the matrix. The algorithm was designed to exploit these characteristics, computing only the nega:tive eigenvalues of -A (due to their symmetrical distribution) by means of the well-know bisection method to obtain the zeros of thc characteristic polynomial. Since the eigenvalues of the left-hand superior block of A interleave those of the matrix, it is possible to use intervals made of pairs of those eigenvalues which contain just a single eigenvalue of - A. Also, the structure of -A was used to develop optimized sections of code of thc algorithm to reduce the number of operations required. The whole algorithm was implementcd in FORTRAN 77, making use of some of the BLAS and LAPACK routines. The results obtained although presenting a better performance than that used currently, due to Barichello, show that the algorithm is susceptible to the ill-conditioning of the matrix.
|
367 |
Resolução dos modelos unidimensional e bidimensional de solidificação de metais puros e ligas eutéticas através da transformada de LaplaceKozakevicius, Alice de Jesus January 1994 (has links)
Este trabalho tem como objetivo apresentar uma solução em forma fechada para uma modelagem, tanto unidimensional quanto bidimensional, do processo de solidificação. Esta modelagem, proposta por Kanetkar et al, aborda a solidificação em termos de dois processos: o macroscópico e o microscópico. O primeiro descreve a transferência de calor do metal para o molde e do sistema metal-molde para o meio ambiente; já. o segundo descreve a formação e o desenvolvimento de grãos no metal durante sua mudança de fase. O acoplamento desses processos se dá. através da inclusão do termo fonte, representante da cinética de solidificação, na equação de conservação de energia para condução do calor. Ao invés de utilizar o método de diferenças finitas na resolução das equações do modelo unidimensional, aplica-se a transformada de Laplace com respeito à variável t e resolve-se analiticamente, via software REDUCE, o sistema de equações gerado pelas condições de contorno para a obtenção dos coeficientes da solução transformada. No caso bidimensional, utiliza-se um método nodal para transformar o problema novamente em uma modelagem unidimensional. Integram-se as equações em uma das direções, no caso, em z, passando-se a calcular o fluxo médio de calor. Uma extensão possfvel é subdividir o domÍnio de integração e calcular o fluxo médio em cada uma das novas regiões interligadas através de condições de contorno. / The modeling of solidification, proposed by Ka.netkar et al, treats the solidification as a process involving ma.croscopic and microscopic íeatures. The ma.croscopic aspect desenhes the heat transfer from the metal to the cylindric body and from the system "metal-mold" to the surroundings. The second describes the formation and development of grains in the metal during its fase changing. The coupling of these two features of the process is ma.de with the inclusion of a source term, tha.t representa the nucleation, in the conservation equation for the heat transíer. lnstead of using finite diference methods for solving the equations of the unidi.mentiona. l model, Laplace transform with respect to the temporal va.riable ( t) is applied in the equations, and for solving analytically the system of equations generated by the boundary conditions from the model, the software REDUCE is used. In the two dimentional model is used a nodal method to transform the problem aga.in in a unidimentional modeling. The equations are integrated in a choosen direction, here z. After that they were solved for a mean heat flux. lt is aslo possible to divide the domain of integration and to calculate the mean heat flux in ea.ch new region considering that ea.ch one is connected with the others by new boundary conditions.
|
368 |
Um algoritmo para o cálculo dos valores da matriz LTSNDenardi, Vania Bolzan January 1997 (has links)
Apresentamos um novo algoritmo, baseado no algoritmo de inversão de matrizes de Leverrier-Fadeev, para extrair os autovalores e os coeficientes do polinômio característico da matriz (si+ A), não-simétrica, que surge em conexão com o método LTSN - o qual utiliza a transformada de Laplace para a solução da equação de ordenadas discretas S N. O algoritmo baseia-se em propriedades exibidas pela matriz, cuja estrutura e valores dos elementos fazem com que todos os seus autovalores sejam reais e simétricos em relação a zero. Evidências experimentais demonstram que, os autovalores do bloco superior esquerdo da matriz, de dimensão N /2, entrelaçam os autovalores negativos de -A. O algoritmo foi implementado em FORTRAN 77, usando algumas rotinas do BLAS e do LAPACK, e estruturado de forma a explorar a estrutura da matriz, permitindo efetuar os cálculos necessários em um menor tempo e com um menor gasto de menória. No entanto, apesar de ganhos obtidos em comparação com o algoritmo usualmente utilizado, proposto por Barichello, nossos experimentos demonstram a instabilidade numérica do algoritmo de Leverrier-Fadeev. / We present a new algorithm to compute the eigenvalues and the coefficients o f the characteristic polynomial o f a nonsymmetric matrix o f the form (sI+ A), which arises in connection with the LTSN method for the solution of thc discrete ordinates equations S N. Our algorithm is a modifi.cation of the matrix inversion Leverrier-Fadeev algorithm, exploiting the pattern existent in the matrix -A and some properties exhibited by its eigenvalues, which have been determined experimentally. More specifi.cally, its eigenvalues alllie on the real axis and are symmetrically distributed around zero. Also, -A has a block structure and the eigenvalues of the left-hand superior block interleave the negative eigenvalues of the matrix. The algorithm was designed to exploit these characteristics, computing only the nega:tive eigenvalues of -A (due to their symmetrical distribution) by means of the well-know bisection method to obtain the zeros of thc characteristic polynomial. Since the eigenvalues of the left-hand superior block of A interleave those of the matrix, it is possible to use intervals made of pairs of those eigenvalues which contain just a single eigenvalue of - A. Also, the structure of -A was used to develop optimized sections of code of thc algorithm to reduce the number of operations required. The whole algorithm was implementcd in FORTRAN 77, making use of some of the BLAS and LAPACK routines. The results obtained although presenting a better performance than that used currently, due to Barichello, show that the algorithm is susceptible to the ill-conditioning of the matrix.
|
369 |
Resolução dos modelos unidimensional e bidimensional de solidificação de metais puros e ligas eutéticas através da transformada de LaplaceKozakevicius, Alice de Jesus January 1994 (has links)
Este trabalho tem como objetivo apresentar uma solução em forma fechada para uma modelagem, tanto unidimensional quanto bidimensional, do processo de solidificação. Esta modelagem, proposta por Kanetkar et al, aborda a solidificação em termos de dois processos: o macroscópico e o microscópico. O primeiro descreve a transferência de calor do metal para o molde e do sistema metal-molde para o meio ambiente; já. o segundo descreve a formação e o desenvolvimento de grãos no metal durante sua mudança de fase. O acoplamento desses processos se dá. através da inclusão do termo fonte, representante da cinética de solidificação, na equação de conservação de energia para condução do calor. Ao invés de utilizar o método de diferenças finitas na resolução das equações do modelo unidimensional, aplica-se a transformada de Laplace com respeito à variável t e resolve-se analiticamente, via software REDUCE, o sistema de equações gerado pelas condições de contorno para a obtenção dos coeficientes da solução transformada. No caso bidimensional, utiliza-se um método nodal para transformar o problema novamente em uma modelagem unidimensional. Integram-se as equações em uma das direções, no caso, em z, passando-se a calcular o fluxo médio de calor. Uma extensão possfvel é subdividir o domÍnio de integração e calcular o fluxo médio em cada uma das novas regiões interligadas através de condições de contorno. / The modeling of solidification, proposed by Ka.netkar et al, treats the solidification as a process involving ma.croscopic and microscopic íeatures. The ma.croscopic aspect desenhes the heat transfer from the metal to the cylindric body and from the system "metal-mold" to the surroundings. The second describes the formation and development of grains in the metal during its fase changing. The coupling of these two features of the process is ma.de with the inclusion of a source term, tha.t representa the nucleation, in the conservation equation for the heat transíer. lnstead of using finite diference methods for solving the equations of the unidi.mentiona. l model, Laplace transform with respect to the temporal va.riable ( t) is applied in the equations, and for solving analytically the system of equations generated by the boundary conditions from the model, the software REDUCE is used. In the two dimentional model is used a nodal method to transform the problem aga.in in a unidimentional modeling. The equations are integrated in a choosen direction, here z. After that they were solved for a mean heat flux. lt is aslo possible to divide the domain of integration and to calculate the mean heat flux in ea.ch new region considering that ea.ch one is connected with the others by new boundary conditions.
|
370 |
Um algoritmo para o cálculo dos valores da matriz LTSNDenardi, Vania Bolzan January 1997 (has links)
Apresentamos um novo algoritmo, baseado no algoritmo de inversão de matrizes de Leverrier-Fadeev, para extrair os autovalores e os coeficientes do polinômio característico da matriz (si+ A), não-simétrica, que surge em conexão com o método LTSN - o qual utiliza a transformada de Laplace para a solução da equação de ordenadas discretas S N. O algoritmo baseia-se em propriedades exibidas pela matriz, cuja estrutura e valores dos elementos fazem com que todos os seus autovalores sejam reais e simétricos em relação a zero. Evidências experimentais demonstram que, os autovalores do bloco superior esquerdo da matriz, de dimensão N /2, entrelaçam os autovalores negativos de -A. O algoritmo foi implementado em FORTRAN 77, usando algumas rotinas do BLAS e do LAPACK, e estruturado de forma a explorar a estrutura da matriz, permitindo efetuar os cálculos necessários em um menor tempo e com um menor gasto de menória. No entanto, apesar de ganhos obtidos em comparação com o algoritmo usualmente utilizado, proposto por Barichello, nossos experimentos demonstram a instabilidade numérica do algoritmo de Leverrier-Fadeev. / We present a new algorithm to compute the eigenvalues and the coefficients o f the characteristic polynomial o f a nonsymmetric matrix o f the form (sI+ A), which arises in connection with the LTSN method for the solution of thc discrete ordinates equations S N. Our algorithm is a modifi.cation of the matrix inversion Leverrier-Fadeev algorithm, exploiting the pattern existent in the matrix -A and some properties exhibited by its eigenvalues, which have been determined experimentally. More specifi.cally, its eigenvalues alllie on the real axis and are symmetrically distributed around zero. Also, -A has a block structure and the eigenvalues of the left-hand superior block interleave the negative eigenvalues of the matrix. The algorithm was designed to exploit these characteristics, computing only the nega:tive eigenvalues of -A (due to their symmetrical distribution) by means of the well-know bisection method to obtain the zeros of thc characteristic polynomial. Since the eigenvalues of the left-hand superior block of A interleave those of the matrix, it is possible to use intervals made of pairs of those eigenvalues which contain just a single eigenvalue of - A. Also, the structure of -A was used to develop optimized sections of code of thc algorithm to reduce the number of operations required. The whole algorithm was implementcd in FORTRAN 77, making use of some of the BLAS and LAPACK routines. The results obtained although presenting a better performance than that used currently, due to Barichello, show that the algorithm is susceptible to the ill-conditioning of the matrix.
|
Page generated in 0.0233 seconds