1 |
Dynamique de la formation de nanostructures périodiques par impulsions laser ultrabrèves sur une surface métallique / Dynamics of periodic nanostructure formation on metal surfaces by ultrashort laser pulsesBounhalli, Mourad 15 December 2011 (has links)
La surface d’un matériau exposé à une irradiation laser à une fluence proche de son seuil d'ablation laisse apparaître des structures périodiques LIPSS (Laser Induced Periodic Surface Structure) d’orientation dépendant de la polarisation de faisceau incident et dont la période est de l'ordre de la longueur d'onde. Les causes de ce phénomène qui suscite l'attention des chercheurs depuis plus d’une trentaine d’années sont maintenant bien connues. Cependant, son étude dans le cadre de l'utilisation récente de lasers à impulsions ultra-brèves fait surgir de nouvelles interrogations et relance l'intérêt pour le sujet. Ce travail est consacré à l’étude dynamique de la formation des nanostructures sur une surface métallique suite à une interaction laser femtoseconde. Nous nous intéressons aux mécanismes responsables de la formation de ces structures et nous proposons des explications permettant de comprendre leur origine. Dans le premier chapitre on présente une étude de l’état de l’art sur la formation des LIPSS, on y aborde les paramètres influant sur la formation de ces structures ainsi que les différents modèles explicatifs élaborés par les chercheurs. Ce chapitre traite également de l’interaction laser matière et de ses différents processus. Le deuxième chapitre met l’accent sur les dispositifs expérimentaux réalisés dans ce cadre. Le troisième chapitre présente, quant à lui une étude expérimentale permettant de rendre compte du rôle de l’excitation du plasmon de surface dans la formation de LIPSS. Dans le quatrième chapitre on analyse les résultats relatifs à l’influence du couplage électron phonon sur la formation des LIPSS. Enfin, le cinquième et dernier chapitre met en évidence le rôle de la relaxation électron-phonon sur la formation des LIPSS à l’aide d’une expérience pompe-sonde / When a material is irradiated with laser fluency close to its ablation threshold, periodic surface structures LIPSS (Laser Induced Periodic Surface Structure) appears on its surface. These structures are dependent of the polarization vector of incident electric field and their periods are close to the laser wavelength. They have been extensively studied for more than thirty years, and their origins are quite well understood. However, the recent use of ultra-short laser sources has renewed the subject. Present work is dedicated to the dynamics study of the nanostructures formation on a metal surface by femtosecond laser irradiation. We are interested in mechanisms responsible for the formation of these structures and we propose an explanation of their origin. The first chapter presents a literature review on the formation of LIPSS. Here, the parameters affecting the formation of these structures as well as a different models developed by researchers will be discussed. This chapter also addresses the laser material interaction and its processes. The second chapter focuses on the experimental devices used in this context. The third chapter deals with the experimental study concerning the role of excitation of surface plasmon in the formation of LIPSS. In the fourth chapter, the results on the influence of electron phonon coupling on the formation of LIPSS are analyzed. Finally, the last chapter highlights the role of electron-phonon relaxation on the formation of LIPSS using pump-probe experiments
|
2 |
Etude de la dynamique de formation de nanostructures périodiques sur une couche mince de cuivre induites par impulsions laser nanoseconde et picoseconde à 266 nm / Investigation of dynamic of periodic nanostructure formation on copper thin film by nano - and picosecond laser pulses at 266 nmHuynh, Thi Trang Dai 20 November 2014 (has links)
Les nanostructures périodiques induites par faisceau laser ont stimulé de nombreuses recherches en raison de leurs applications dans les domaines des technologies micros et nanométriques, telles que la lithographie, la mise en mémoire des données à haute densité, les systèmes nano et micro-électromécaniques (NEMS/MEMS). La dynamique de leur formation sur la surface des couches minces de cuivre (CMC) déposées sur les substrats de silicium et de verre est étudiée dans ce travail. Cette analyse est réalisée en utilisant deux approches de caractérisation : ex situ pour les analyses Microscopie Electronique à Balayage (MEB) et en transmission (MET), Microscopie à Force Atomique (AFM) et in situ pour les signaux de Réflectométrie en Temps Réel (RRT). Les processus de changement d’état (fusion, ablation, décollement…) et des modifications de la morphologie de surface à l’échelle nanométrique sont étudies en variant un nombre de paramètres clés, à savoir : le dose énergétique (la fluence et le nombre de tirs laser), l’épaisseur des CMC et la nature de substrat en régime d’interaction picoseconde et nanoseconde. En effet, les nanostructures avec une période spatiale de 266 nm (proche de la longueur d’onde laser (λ)), 130 nm (λ/2) et 60 nm (λ/4) sont obtenues. Ces différentes nanostructures périodiques ont été rassemblées dans des cartographies 2D et corrélés à la dose énergétique (fluence et nombre de tirs). Enfin, une tentative d’interprétation des mécanismes de formation des nanostructures périodiques sur les CMC générées en régime laser picoseconde, établie sur la base de nos données expérimentales, semble pertinente avec la théorie d’auto-organisation, notamment pour des nombres de tirs laser importants. / Periodic surface nanostructures induced by laser have attracted particular attention because of their applications in the domain of micro and nanotechnologies such as lithography, high density data storage, nano- and micro-electromechanical systems (NEMS/MEMS). The dynamic of their formation on the surface of copper thin film deposited on silicon and glass substrates was investigated in this present work. Two methods are used in this analysis: ex situ analyses by Scanning and Transmission Electron Microscopy (SEM/TEM), Atomic Force Microscopy (AFM) and in situ diagnostic by Time Resolved Reflectivity method (TRR). The process of phase change (melting, ablation, thin film removal …) and surface morphology modification at the nanoscale are studied with respect to irradiation dose (the fluence and the number of laser shots), the thickness of thin film and the substrate thermal conductivity in the pico- and nanosecond regime. Namely, nanostructures with a spatial period of 266 nm (close to the irradiation wavelength (λ)), 130 nm (λ/2) and 60 nm (λ/4) were successfully obtained. The global relationship between the laser parameters (i.e. fluence and number of laser shots) and nanostructure formation was established in the form of a 2D map. Lastly, an interpretation of the mechanism of periodic nanostructures formation on copper thin film induced by picosecond laser was established on the basis of our experimental data, seems relevant to the self-organization theory, particularly, in multi-pulses regime.
|
3 |
Relation entre auto-organisation et création/résorption de défauts microstructuraux sous irradiation laser ultrabrèves / Relationship between self-organization and creation/resorption of microstructural defects under ultrashort laser irradiationAbou Saleh, Anthony 08 January 2019 (has links)
L’irradiation des matériaux par des impulsions laser ultrabrèves déclenche un agencement anisotrope de la matière à l’échelle nanométrique: des structures de surface périodiques induites par laser (LIPSS). L'énergie laser déposée et distribuée de manière inhomogène dans le matériau induit des contraintes thermiques locales et des changements de phase transitoires entraînant ainsi des modifications microstructurales. Cette thèse porte sur le rôle de l'altération de la surface irradiée ainsi que les modifications microstructurales en profondeur dans la contribution à la formation des LIPSS, en établissant une corrélation entre l'auto-organisation de la matière et la génération de défauts en tenant en compte de l'orientation cristalline. Comme les LIPSS sont générés au seuil de transition de phase, l’étude de la corrélation avec les défauts induits est alors pertinente. Une étude expérimentale couplée à des simulations de dynamique moléculaire effectuées à l’Université de Virginie suggère que l'altération de surface générée par une irradiation d'échantillons monocristallins de Chrome dans le régime de spallation est susceptible de jouer un rôle majeur dans le déclenchement de génération de LIPSS de haute fréquence spatiale. La microscopie à force atomique ainsi que les résultats de simulations attestent que les caractéristiques de rugosité de surface à l'échelle nanométrique dépendent de l'orientation cristalline. La forte rugosité de surface générée par la première impulsion laser active la diffusion de la lumière laser et l’exaltation du champ local lors des irradiations ultérieures, ce qui génère des structures LIPSS de haute fréquence plus prononcés du côté (100) que celle du (110). Une étude expérimentale approfondie, utilisant la microscopie électronique rétrodiffusés et transmission, a révélé que le Cr (110) est plus susceptible d'être endommagé que les autres orientations cristallines de surface. On constate que les défauts induits par le laser peuvent altérer la topographie de surface et la région sous-jacente, ce qui peut avoir un impact sur les caractéristiques des centres de rugosité favorisant la formation de structures de fréquence spatiale élevée. Afin d’accéder à la transition de phase subie dans la région de formation des LIPSS, une approche d'analyse microstructurale à haute résolution couplée à des calculs hydrodynamiques est utilisée, comprenant la croissance épitaxiale et la nanocavitation. La formation de structures de fréquence spatiale élevée est le résultat de nanocavités périodiques piégés sous la surface, ainsi que des nanocavités apparues à la surface des matériaux cubiques faces centrées.De plus, étant donné que le feedback dans la formation des LIPSS est souvent évoquée, le comportement dynamique des surfaces a été sondé par microscopie électronique à photoémission et étayé par des calculs électromagnétiques. Un caractère périodique des photoélectrons émis par les creux des LIPSS a été mis en évidence, ce qui a permis de vérifier la modulation du dépôt d'énergie.Le travail effectué contribue non seulement à progresser vers l'objectif général d’élucider le phénomène complexe multi-échelles de la formation des LIPSS, mais ouvre une nouvelle voie expérimentale pour générer des structures non conventionnelles avec des périodicités extrêmes (~60nm), offrant ainsi de nouvelles opportunités pour le traitement laser ultrarapide des métaux. / Irradiation of materials by ultrashort laser pulses triggers anisotropically structured arrangement of matter on the nanoscale, the so-called laser-induced periodic surface structures (LIPSS), or ‘ripples’. Ultrashort laser energy deposited and distributed inhomogeneously in the material launches local thermal stresses and transient phase changes yielding microstructural modifications. This thesis focuses on the role of irradiated surface alteration as well as in-depth microstructural modifications in promoting LIPSS formation, by establishing a correlation between self-organization of matter and defect generation taking into account crystalline orientation. Since LIPSS are generated at the threshold of phase transition, then the correlation with defects formation is relevant. An experimental study coupled with molecular dynamic MD simulations performed in the University of Virginia suggest that surface alteration generated by a single pulse irradiation of monocrystalline Cr samples in the spallation regime is likely to play a main role in triggering high-spatial frequency LIPSS generation upon irradiation by multiple laser pulses. Atomic force microscopy as well as computational results suggested that the nanoscale surface features are crystalline orientation dependent. The higher surface roughness generated by the first laser pulse activates scattering of the laser light and the local field enhancement upon irradiation by the second laser pulse, leading to the formation of much more pronounced high-spatial frequency structures on the (100) surface as compared to (110) one. An extended in-depth experimental study, using electron backscattered and transmission microscopy, combined with large-scale two-temperature model TTM-MD simulations revealed that Cr (110) is more likely to get damaged. It is found that laser-induced defects can alter the surface topography and the region beneath it which can impact in turn the roughness center features promoting high-spatial frequency structures formation. In order to infer the phase transition undergone in the LIPSS region, a high resolution microstructural analysis approach coupled with hydrodynamic calculations is employed, including epitaxial regrowth and nanocavitation. High-spatial frequency structures formation is found to be the result of periodic nanovoids trapped beneath the surface as well as nanocavities emerged at the surface on fcc materials. Furthermore, since optical feedback in LIPSS is often evoked, the behavior of dynamical surfaces was probed by photoemission electron microscopy and supported by electromagnetic calculations. A periodic character of photoelectrons emitted from nanoholes was unveiled, which in turn verified a modulated energy deposition. The performed work not only contributes to the progress towards the general goal of untangling the complex multiscale phenomenon of the LIPSS formation, but unlocks a new experimental setup to generate unconventional structures with extreme periodicities (~60 nm), which offers new opportunities in ultrafast laser processing of metals.
|
4 |
Dynamique de la formation de nanostructures périodiques par impulsions laser ultrabrèves sur une surface métalliqueBounhalli, Mourad 15 December 2011 (has links) (PDF)
La surface d'un matériau exposé à une irradiation laser à une fluence proche de son seuil d'ablation laisse apparaître des structures périodiques LIPSS (Laser Induced Periodic Surface Structure) d'orientation dépendant de la polarisation de faisceau incident et dont la période est de l'ordre de la longueur d'onde. Les causes de ce phénomène qui suscite l'attention des chercheurs depuis plus d'une trentaine d'années sont maintenant bien connues. Cependant, son étude dans le cadre de l'utilisation récente de lasers à impulsions ultra-brèves fait surgir de nouvelles interrogations et relance l'intérêt pour le sujet. Ce travail est consacré à l'étude dynamique de la formation des nanostructures sur une surface métallique suite à une interaction laser femtoseconde. Nous nous intéressons aux mécanismes responsables de la formation de ces structures et nous proposons des explications permettant de comprendre leur origine. Dans le premier chapitre on présente une étude de l'état de l'art sur la formation des LIPSS, on y aborde les paramètres influant sur la formation de ces structures ainsi que les différents modèles explicatifs élaborés par les chercheurs. Ce chapitre traite également de l'interaction laser matière et de ses différents processus. Le deuxième chapitre met l'accent sur les dispositifs expérimentaux réalisés dans ce cadre. Le troisième chapitre présente, quant à lui une étude expérimentale permettant de rendre compte du rôle de l'excitation du plasmon de surface dans la formation de LIPSS. Dans le quatrième chapitre on analyse les résultats relatifs à l'influence du couplage électron phonon sur la formation des LIPSS. Enfin, le cinquième et dernier chapitre met en évidence le rôle de la relaxation électron-phonon sur la formation des LIPSS à l'aide d'une expérience pompe-sonde.
|
5 |
Prebiotic photoreduction and polymerization of cysteinyl peptides.Xxx, Anju 11 October 2023 (has links)
Cysteinyl peptides likely played an important role in the prebiotic synthesis of cofactors, such as iron-sulfur clusters. However, cysteinyl peptides must be reduced in order to coordinate iron-sulfur clusters. Mixtures of ferric ions and cysteinyl peptides leads to the reduction of ferric to ferrous ions and the concomitant formation of disulfide bridged, oxidized cysteinyl peptides that are incapable of coordinating an iron-sulfur cluster. Here, we develop a photochemically driven solution to this problem. Lipoic acid (( R )-5-(1,2-dithiolane-3-yl)pentanoic acid), a molecule structurally similar to fatty acids, can be photochemically reduced and can subsequently reduce the oxidized cysteinyl peptides needed for the coordination of an iron-sulfur cluster. Other dithilane ring containing molecules possess similar activity to lipoic acid.
The synthesis of small peptides containing cysteines, such as glutathione and GCG (Gly-Cys-Gly) is easy by both solid phase and solution phase methodologies. However, as the length of the peptide increases, the yield begins to decrease, especially for peptides containing cysteines due to oxidation. One solution could be to exploit a previously uncovered mechanism for the joining of peptides into longer peptides. Such mechanisms, referred to as CPL for catalytic peptide ligation, rely on either thiols or metals as catalysts and peptide nitriles as substrates. Thus far, CPL has only been exploited with non-cysteinyl peptides. In this thesis, we extend CPL to cysteine containing peptides by taking advantage of the templating effects of Zn2+.
Longer peptides with properly spaced cysteines are frequently better able to stabilize iron-sulfur clusters in aqueous solution than shorter peptides. Coordination can either be complete or an open coordination position, filled by solvent, can be used to bind substrate. Two well-known examples of such an arrangement are the radical SAM (S-adenosylmethionine) enzyme and aconitase being an enzyme of the citric acid cycle. We designed and synthesized peptide sequences that could coordinate a [4Fe-4S]2+ cluster with three cysteinyl ligands, leaving an open coordination position. The stability of the [4Fe-4S] cluster was affected by the intermediates of the citric acid cycle. The iron-sulfur can be reconstituted with the long peptidyl sequences from proteins such as SLC25A39 which contains four cysteine ligands to form [2Fe-2S] cluster, which is necessary for glutathione transport from cytosol to mitochondria.
|
6 |
Semiconductor Surface Modification using Mid-Infrared, Femtosecond Laser PulsesAustin, Drake Ross January 2017 (has links)
No description available.
|
7 |
High speed mask-less laser-controlled precision micro-additive manufactureTen, Jyi Sheuan January 2019 (has links)
A rapid, mask-less deposition technique for writing metal tracks has been developed. The technique was based on laser-induced chemical vapour deposition. The novelty in the technique was the usage of pulsed ultrafast lasers instead of continuous wave lasers in pyrolytic dissociation of the chemical precursor. The motivation of the study was that (1) ultrafast laser pulses have smaller heat affected zones thus the deposition resolution would be higher, (2) the ultrashort pulses are absorbed in most materials (including those transparent to the continuous wave light at the same wavelength) thus the deposition would be compatible with a large range of materials, and (3) the development of higher frequency repetition rate ultrafast lasers would enable higher deposition rates. A deposition system was set-up for the study to investigate the ultrafast laser deposition of tungsten from tungsten hexacarbonyl chemical vapour precursors. A 405 nm laser diode was used for continuous wave deposition experiments that were optimized to achieve the lowest track resistivity. These results were used for comparison with the ultrafast laser track deposition. The usage of the 405 nm laser diode was itself novel and beneficial due to the low capital and running cost, high wall plug efficiency, high device lifetime, and shallower optical penetration depth in silicon substrates compared to green argon ion lasers which were commonly used by other investigators. The lowest as-deposited track resistivity achieved in the continuous wave laser experiments on silicon dioxide coated silicon was 93±27 µΩ cm (16.6 times bulk tungsten resistivity). This deposition was done with a laser output power of 350 mW, scan speed of 10 µm/s, deposition pressure of 0.5 mBar, substrate temperature of 100 °C and laser spot size of approximately 7 µm. The laser power, scan speed, deposition pressure and substrate temperature were all optimized in this study. By annealing the deposited track with hydrogen at 650 °C for 30 mins, removal of the deposition outside the laser spot was achieved and the overall track resistivity dropped to 66±7 µΩ cm (11.7 times bulk tungsten resistivity). For ultrafast laser deposition of tungsten, spot dwell experiments showed that a thin film of tungsten was first deposited followed by quasi-periodic structures perpendicular to the linear polarization of the laser beam. The wavelength of the periodic structures was approximately half the laser wavelength (λ/2) and was thought to be formed due to interference between the incident laser and scattered surface waves similar to that in laser-induced surface periodic structures. Deposition of the quasi-periodic structures was possible on stainless steel, silicon dioxide coated silicon wafers, borosilicate glass and polyimide films. The thin-films were deposited when the laser was scanned at higher laser speeds such that the number of pulses per spot was lower (η≤11,000) and using a larger focal spot diameter of 33 µm. The lowest track resistivity for the thin-film tracks on silicon dioxide coated silicon wafers was 37±4 µΩ cm (6.7 times bulk tungsten resistivity). This value was achieved without post-deposition annealing and was lower than the annealed track deposited using the continuous wave laser. The ultrafast tungsten thin-film direct write technique was tested for writing metal contacts to single layer graphene on silicon dioxide coated silicon substrates. Without the precursor, the exposure of the graphene to the laser at the deposition parameters damaged the graphene without removing it. This was evidenced by the increase in the Raman D peak of the exposed graphene compared to pristine. The damage threshold was estimated to be 53±7 mJ/cm2 for a scanning speed of 500 µm/s. The deposition threshold of thin-film tungsten on graphene at that speed was lower at 38±8 mJ/cm2. However, no graphene was found when the deposited thin-film tungsten was dissolved in 30 wt% H2O2 that was tested to have no effect on the graphene for the dissolution time of one hour. The graphene likely reacted with the deposited tungsten to form tungsten carbide which was reported to dissolve in H2O2. Tungsten carbide was also found on the tungsten tracks deposited on reduced graphene oxide samples. The contact resistance between tungsten and graphene was measured by both transfer length and four-point probe method with an average value of 4.3±0.4 kΩ µm. This value was higher than reported values using noble metals such as palladium (2.8±0.4 kΩ µm), but lower than reported values using other metals that creates carbides such as nickel (9.3±1.0 kΩ µm). This study opened many potential paths for future work. The main issue to address in the tungsten ultrafast deposition was the deposition outside the laser spot. This prevented uniform deposition in successive tracks close to one another. The ultrafast deposition technique also needs verification using other precursors to understand the precursor requirements for this process. An interesting future study would be a combination with a sulphur source for the direct write of tungsten disulphide, a transition metal dichalcogenide that has a two-dimensional structure similar to graphene. This material has a bandgap and is sought after for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. Initial tests using sulphur micro-flakes on silicon and stainless-steel substrates exposed to the tungsten precursor and ultrafast laser pulses produced multilayer tungsten disulphide as verified in Raman measurements.
|
8 |
Study of ultrashort laser-pulse induced ripples formed at the interface of silicon-dioxide on siliconLiu, Bing 04 1900 (has links)
<p>In this thesis, the ripple formation at the interface of SiO2 and Si were studied in a systematic fashion by irradiating the SiO2-Si samples with ultrashort laser pulses under a broad variety of experimental conditions. They consist of di↵erent irradiating laser wavelengths, incident laser energies, translation speeds, translation directions, spot sizes of the laser beam, as well as oxide thicknesses. The ripples produced by laser irradiation are examined using various microscopy techniques in order to characterize their surface morphology, detailed structures, crystalline properties, and so on. For the experiments carried out at ! = 800 nm, the ripples formed on the SiO2-Si sample with an oxide thickness of 216 nm were first observed under optical microscopy and SEM. After removing the oxide layer with HF solution, the surface features of the ripples on the Si substrate were investigated using SEM and AFM techniques. Subsequently, by means of TEM and EDX analysis, the material composition and crystallinity of the ripples were determined. It is concluded that the ripples are composed of nano-crystalline silicon. In addition to the 216 nm oxide thickness, other oxide samples with di↵erent oxide thicknesses, such as 24, 112, 117, 158 and 1013 nm, were also processed under laser irradiation. The ripple formation as a function of the laser energy, the translation direction and the spot size is discussed in detail. Furthermore, the ripples created at the SiO2-Si interface are compared with</p> <p>the LIPSS created on pure silicon samples that were processed under similar laser irradiation conditions. The spatial periodicities of the ripples were evaluated to be in the range of between 510 nm and 700 nm, which vary with the oxide thickness and other laser parameters. For the experiments using the ! = 400 nm laser pulses, it is found that ripples can also be formed at the SiO2-Si interface, which have spatial periodicities in the range of between 310 nm and 350 nm depending on the oxide thickness. The ripple formation at this 400 nm wavelength as a function of the laser energy, the translation speed, and translation direction is considered as well. For the case of ! = 400 nm irradiation, a comparison is also made between the interface ripples on the SiO2-Si samples and the LIPSS on a pure Si sample. Through FIB-TEM and EDX analysis, it confirmed that the ripples were produced in the substrate while the oxide layer maintained its structural integrity. In addition, the ripples are composed of nano-crystalline silicon whose crystallite sizes are on the order of a few nanometers. Apart from irradiating oxide samples with femtosecond laser pulses, which applies to the two cases of ! = 800 and 400 nm mentioned above, oxide samples with an oxide thickness of 112 nm were irradiated with picosecond laser pulses at ! = 800 nm whose pulse durations are 1 ps and 5 ps, respectively. However, no regular ripples can be produced at the SiO2-Si interface while maintaining the complete integrity of the oxide layer.</p> / Master of Applied Science (MASc)
|
Page generated in 0.0307 seconds