• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 266
  • 122
  • 22
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 546
  • 104
  • 54
  • 53
  • 52
  • 52
  • 46
  • 44
  • 40
  • 40
  • 39
  • 38
  • 36
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Comparison of techniques for estimating pasture herbage mass and productive ground cover for Lakota prairie grass, Kentucky 31 endophyte free tall fescue, Kentucky 31 endophyte infected tall fescue and Quantum 542 tall fescue grazed by stocker steers

Rotz, Jonathan Daniel 12 June 2006 (has links)
In terms of acreage, forage is the number one crop in Virginia. The backbone of these forages has long been tall fescue (Lolium arundinaceum (Schreb.) S.J. Darbyshire). Knowledge of the plant species that make up a pasture and the relative amounts of each species present is important for interpreting potential animal performance. It is also important to know the relative amounts and types of weeds present and to monitor for the presence of poisonous plants or noxious weeds. An experiment was conducted in 2003 through 2005 to investigate botanical composition and yield of "Lakota" prairie grass (Bromus catharticus Vahl.), "Kentucky 31" endophyte-infected (KY31 E+), endophyte-free (KY31 E-), and "Quantum" tall fescue (non toxic endophyte infected) under grazing by stocker steers. Forage botanical composition and yield were determined by clipping three 0.25-m2 areas per treatment replicate. Prior to harvesting, the canopy height within each quadrate was measured with a disc meter. In 2005, productive ground cover was assessed using visual evaluation techniques, point quadrat method, and digital imagery quantified with terrestrial remote sensing. Forages were established September 2002 and grazing was initiated in July of 2003. Experimental design was a randomized complete block with four replications. Averaged over the three years the yield of KY31E+ was higher (p<0.05) than all other treatments. Lakota prairie grass had lower (p<0.05) yields than both KY31 E+ and Quantum tall fescue, however no yields did not differ between Lakota prairie grass and KY31 E-. Our results showed a typical forage distribution curve for all the treatments. Early spring, summer, and fall productivity of Lakota prairie grass was less than all the fescues, thus did not extend the grazing season. Forage persistence was greatest for KY31 E+ and Quantum and lowest for Lakota when averaged over all years. Among sampling methods for ground cover, terrestrial remote sensing was the most accurate, compared with visual evaluation and point quadrat methods. For estimates of all yield indirect methods of assessment had high errors; however the plate meter calibrated by sward density seemed the least variable of the methods tested. / Master of Science
402

An Analytical Study of the Instructional Procedures Utilized by the Coaching Staff at the Grand Prairie High School, Grand Prairie, Texas, in the Teaching of the T-Wing Football Formation

Pruett, Tom 06 1900 (has links)
The purposes of this study may be stated as follows: 1. To analyze the instructional procedures utilized by the coaching staff in the development of the T-wing football formation at the Grand Prairie High School, Grand Prairie, Texas. 2. To gain a better understanding of the functions of the T-wing football formation as it is taught at the Grand Prairie High School. 3. To make recommendations and to propose further developments for the instructional procedures used in coaching the T-wing football formation at the Grand Prairie High School.
403

Economic Development of the Gulf Coastal Prairie

Lumpkin, George Enos 08 1900 (has links)
The study of the economic development of the Gulf Coastal Prairie has been divided into the following seven chapters: (1) Physical Aspects, (2) Grazing, (3) Development of Farming, (4) Development of Transportation, (5) Development of Mineral Resources, (6) Development of Industry and (7) A Look to the Future.
404

Influence of the Mexican prairie dog (Cynomys mexicanus) on plant taxonomical and functional diversity and soil properties in semiarid grasslands of Mexico

Rodriguez Barrera, Maria Gabriela 08 August 2024 (has links)
Research in grassland ecosystems worldwide has highlighted the crucial role many burrowing herbivore mammals provide as so-called “ecosystem engineers”. Many of these examples come from North America and have mostly been focused on Prairie Dogs (Cynomys sp.), which, due to their burrowing and grazing activities, are considered as a species of high ecological importance. Multiple studies have shown that their loss reduces grassland ecosystem functions and that their activities increase plant, arthropod, bird and mammal biodiversity, grassland heterogeneity, provide benefits to cattle, among many other key ecological roles. However, prairie dog species are distributed throughout multiple landscapes in North America, and most of the studies have been on mixed prairie grasslands. It is therefore not surprising that, when comparing the effects of different prairie dog species across ecoregions, the role of prairie dogs is not as clear and results vary, depending on spatial context, type of grasslands, climate and environmental conditions. Yet, grasslands are considered as some of the most highly threatened ecosystems, having high rates of conversion, desertification and biodiversity loss. Therefore, it is imperative to understand the effects prairie dog species have on the ecosystem. In this thesis, I focus on the Mexican prairie dog (C. mexicanus), a species in drastic decline due to habitat loss, caused by agriculture, overgrazing, human settlement, fragmentation, diseases (e.g. plague) and past eradication programs. C. mexicanus is considered endangered by the IUCN red list of threatened species and The Convention of International Trade in Endangered Species of Wild Fauna and Flora. It is also endemic to the Grassland Priority Conservation Area (GPCA) of El Tokio, located in Northeast Mexico within the Chihuahuan desert ecoregion and designated as a GPCA by the Commission for Environmental Cooperation (a cooperation between Canada, U.S. and Mexico) in 2009. Grasslands within GPCA El Tokio are highly fragmented as a result of many years of intense agricultural practices and other anthropogenic activities and around 90% of the original grasslands have been lost. However, it is considered an area of ecological importance due to its unique vegetation and edaphic associations, as well as being a key habitat for migratory birds. Up until now, very few studies have explored the role C. mexicanus has on plant taxonomical diversity and soil properties. Moreover, no studies focusing on prairie dogs have looked into the effect the species has on plant functional diversity or soil properties. Furthermore, GPCA El Tokio is a data-scarce area. Therefore, at this point, basic information and system understanding are urgently needed in order to identify which conservation efforts are most promising and which specific sites these efforts should focus on. Understanding the influence of prairie dog disturbance on vegetation parameters (taxonomic and functional), soil properties and their interaction with environmental conditions through time, will increase knowledge on the risks and vulnerability of grasslands, promoting solutions that can support grassland management. Furthermore, there is a clear gap in the literature about the varying effects of prairie dogs depending on different grassland types and environmental conditions. To study such conditions, I first classified and controlled for factors that could influence prairie dog ecosystem engineering effects addressing the following two general questions: (1) Which grassland types are present in GPCA El Tokio? (2) Do the different grassland types present in GPCA El Tokio influence prairie dog colony sizes and burrow density? When influencing factors were confirmed, I then assess the effects of prairie dog disturbance on vegetation and soil to answer the following questions: (3) Are there clear distinctions across GPCA El Tokio grassland environmental variables? (4) Do the different grassland types present in GPCA El Tokio influence prairie dog colony sizes and burrow density? To do so I selected a representative sample of sites covering the varying environmental conditions present in GPCA El Tokio grasslands, a data-driven clustering approach was used. Once clusters were defined, average burrow density was estimated from remote sensing imagery. To study vegetation measures I first, sampled plant species (92 species and 28 families and 6 traits) to obtain taxonomical and functional diversity measures, and obtained variables related to nutrient availability, carbon and climate regulation, and water regulation and purification. To study the effects on soil a total of 11 soil properties were obtained (382 samples were analyzed). Field work was done during the wet season and repeated during the dry season to obtain season variations of all measures. Soil measures were further obtained at depths of 0-10cm and 10 to 20cm. Results from the study classify GPCA El Tokio into 8 different grassland types with 4 clusters being the most dominant, named Agriculture, Arid, Calcareous, Mountain. I found agricultural grasslands had significantly lower colony sizes compared to calcareous grasslands when outliers were considered, but no differences when outliers were removed and burrow density varied depending on the grassland type, with mountain grasslands having a significantly lower burrow density compared to agricultural and calcareous grasslands. Regarding the effects of prairie dogs on vegetation and soil my findings suggest that functional metrics and community weighted mean (CWM) analyses responded to interactions between prairie dog disturbance, grassland type and season, whilst species diversity and cover measures were less sensitive to the role of prairie dog disturbance. I found weak evidence that prairie dog disturbance has a negative effect on vegetation structure, except for minimal effects on C4 and graminoid cover, but which depended mainly on season. Grassland type and season explained most of the effects on plant functional and taxonomic diversity as well as CWM traits. In the case of soil properties WOP grasslands tended to have higher nutrient availability than WP grasslands. However, mounds played a key role within WP grasslands. Mounds reduce compaction and increase nutrient levels of soil organic carbon, nitrogen, potassium, magnesium, and phosphorus. Such an effect was particularly present in calcareous and arid grasslands, and in many cases the effect was enhanced under wet conditions. In general, the effect of disturbance on soil property changes was dependent on environmental conditions. Overall, my study shows evidence that grassland type and season have a stronger effect than prairie dog disturbance on the vegetation of this short-grass, water-restricted grassland ecosystem.:3 TABLE OF CONTENTS Declaration of conformity 2 1 Acknowledgments 3 2 Extended Summary 5 4 List of Figures 11 5 List of Tables 13 1 Introduction 1 1.1 Importance of grasslands 1 1.2 Grassland conservation and ecosystem engineers 2 1.3 Prairie dogs: ecosystem engineers of grasslands in North America 3 1.4 Distribution of prairie dogs across North American grasslands 6 1.5 Current threats and conservation of the Mexican prairie dog C. mexicanus 7 1.6 Research questions, aims and objectives 9 2 Scientific background 13 2.1 Differences in grassland definitions and classifications 13 2.2 Dryland biases in grassland research 13 2.3 Research gaps on C. mexicanus 15 2.4 Functional diversity and disturbance 16 2.5 Soil complexity and limited research 17 3 Study Area: Grassland Priority Conservation Area of El Tokio 19 3.1 General overview 19 3.2 Bioregions, geology, topography and soils 20 3.3 Climate 23 3.4 Ecoregions, Land cover and Biodiversity 24 3.5 Anthropogenic activities and environmental issues 28 4 Assessing and classifying factors that could influence prairie dog ecosystem engineering effects 31 4.1 Data-driven identification of grassland types 33 4.1.1 Introduction 33 4.1.2 Methods 33 4.1.3 Results 36 4.1.4 Discussion and conclusion 39 4.2 C. mexicanus colony trends and differences across grassland types 41 4.2.1 Introduction 41 4.2.2 Methods 42 4.2.3 Results 48 4.2.4 Discussion and conclusion 52 5 Prairie dog disturbance effects on vegetation and soil across different grassland types and seasons 55 5.1 General methodology 57 5.1.1 Selection of grassland locations 57 5.1.2 Defining study sites and plots 58 5.1.3 Vegetation and soil sampling design 59 5.2 The effect of C. mexicanus on taxonomical and functional diversity across different seasons and grassland types 61 5.2.1 Introduction 61 5.2.2 Methods 63 5.2.3 Results 65 5.2.4 Discussion and conclusion 72 5.3 Soil property responses to the presence of C. mexicanus and its mounds across different grassland types, seasons and depths 77 5.3.1 Introduction 77 5.3.2 Methods 78 5.3.3 Results 81 5.3.4 Discussion and conclusion 88 6 Synthesis 95 6.1 Key findings 95 6.2 Management and Conservation opportunities 97 6.2.1 Designing management plans to suit existing environmental conditions 97 6.2.2 Functional diversity: an opportunity to identify patterns of vegetation across environmental conditions and scales. 98 6.3 Future research 99 6.3.1 Exploration of spatial and temporal effects 99 6.3.2 Mechanistic understanding of disturbance dynamics 100 6.3.3 A need for plant and soil ecological data 101 7 References 103 8 Appendix 131 8.1 Appendix 1. Prairie dog research reference list 132 8.2 Appendix 2. List of individual colonies with areas and other relevant information 140 8.3 Appendix 3. Historical and present colony data. 142 8.4 Appendix 4. Correlation results 144 8.5 Appendix 5. Top 3 models 146 8.6 Appendix 6. Species list per grassland type. 151 8.7 Appendix 7. Correspondence analysis (CA) for each grassland 154 8.8 Appendix 8. Post-hoc results 155 8.9 Appendix 9. Top 3 dominant species. 157 8.10 Appendix 10. HPD credible interval and ROPE. 159
405

The relevance of John of the Cross (1542-1591) for Canadian prairie evangelical spirituality

Peasgood, Joyce Marie 30 November 2007 (has links)
Evangelicalism in western Canada was fuelled by fundamentalist theology and devotion which evolved in this region during the early twentieth century. Generally, Canadian evangelical theologians have focused on the historical and theological implications of evangelicalism within this area. Due to the nature of evangelical theology, which is governed by reason and the defense of truth and dogma, this Christian movement in the west ignored by default concepts connected to mystical theology. This thesis researches a question which has not had an adequate response within evangelical theological tradition, primarily as a result of its disregard for mystical theology. The issue of concern in this thesis is the nature of the process of sanctification of the soul, and particularly, the purpose of the silence of God during this time. Questions to be addressed are: `what is the nature of spiritual transformation?', `what transpires in the soul of the person?' and `what is the role of the `dark night' and the `silence of God' during this experience?' This research responds with an explanation to the underlying cause for the inability of evangelical spirituality in the Canadian west to respond to this issue. It also provides a plausible resolution to the problem which is embedded in the literature of John of the Cross, a sixteenth century Spanish mystic. / CHR SPIRIT, CHURCHIST, MISS / DTH (CHR SPIRIT)
406

The relevance of John of the Cross (1542-1591) for Canadian prairie evangelical spirituality

Peasgood, Joyce Marie 30 November 2007 (has links)
Evangelicalism in western Canada was fuelled by fundamentalist theology and devotion which evolved in this region during the early twentieth century. Generally, Canadian evangelical theologians have focused on the historical and theological implications of evangelicalism within this area. Due to the nature of evangelical theology, which is governed by reason and the defense of truth and dogma, this Christian movement in the west ignored by default concepts connected to mystical theology. This thesis researches a question which has not had an adequate response within evangelical theological tradition, primarily as a result of its disregard for mystical theology. The issue of concern in this thesis is the nature of the process of sanctification of the soul, and particularly, the purpose of the silence of God during this time. Questions to be addressed are: `what is the nature of spiritual transformation?', `what transpires in the soul of the person?' and `what is the role of the `dark night' and the `silence of God' during this experience?' This research responds with an explanation to the underlying cause for the inability of evangelical spirituality in the Canadian west to respond to this issue. It also provides a plausible resolution to the problem which is embedded in the literature of John of the Cross, a sixteenth century Spanish mystic. / CHR SPIRIT, CHURCHIST, MISS / DTH (CHR SPIRIT)
407

An Evaluative Study of the Grasslands of the R.J. McMurry Ranch, Denton County, Texas

Nolen, Bette Rudd 06 1900 (has links)
It is the purpose of this problem to classify the four major pastures of the McMurry ranch using the discussed classification system. The definite measurable qualities characterizing each condition of the system are used extensively in this study. The problem is concerned also with the observation of results of misuse, the present practices that could result in further depletion of portions of the McMurry ranch, and procedures being employed at the present time aimed toward the restoration of these depleted portions.
408

Revision of the Subgenus Prionus (Neopolyarthron) Semenov (Coleoptera: Cerambycidae: Prioninae) in North America, with Notes on Prionus (Antennalia) Casey

Schiefer, Terence L 14 December 2018 (has links) (PDF)
The classification of North American species of Prionus (Prionus) Geoffroy is reevaluated, with three subgenera recognized: P. (Antennalia) Casey, revived status, P. (Neopolyarthron) Semenov, revived status, and P. (Prionus). Prionus (Neopolyarthron) is revised and consists of P. imbricornis (Linnaeus), P. debilis Casey, revived status, and P. cuneatus Casey, revived status, with the latter two species removed from synonymy with P. imbricornis. Prionus robustus Casey, new synonymy, and P. fissicornis parviceps Casey, revised synonymy, are transferred from synonymy with P. imbricornis to synonymy with P. cuneatus and P. fissicornis respectively. Keys to North American subgenera of Prionus and to species of P. (Neopolyarthron) are provided. Species of P. (Neopolyarthron) are redescribed, diagnosed, and illustrated, and the distribution, hosts, habitat, and conservation status of each are discussed. Species distribution maps are provided, along with 26 new state records. Prionus fissicornis is diagnosed, and type specimens of its synonyms are reviewed and illustrated.
409

Efficacy of native grassland barriers at limiting prairie dog dispersal in Logan county, Kansas

Eddy, Zachary January 1900 (has links)
Master of Arts / Department of Geography / J. M. Shawn Hutchinson / Prairie dogs (Cynomys spp.) are social, ground-dwelling rodents native to North American short- and mixed-grass prairie. They are also the main prey of the Federally-endangered black-footed ferret (Mustela nigripes). At the same time, prairie dog colonization is highly opposed by most agricultural landowners. Therefore nonlethal population management techniques must be investigated. This paper presents the results of research on the effectiveness of ungrazed vegetative barriers composed of native plants at limiting prairie dog dispersal away from a ferret reintroduction site in northwest Kansas. Data was collected on barrier quality and condition as well as estimates of population densities of immigrant prairie dogs, dispersing through the vegetative barrier to reoccupy previously extirpated colonies on properties surrounding the ferret reintroduction site. Using strip transects and aboveground visual counts to estimate population densities and visual obstruction ranking techniques to sample barrier condition, statistical analysis of the data indicated that while barrier condition increased over time, it was not effective at limiting prairie dog emigration from the black-footed ferret reintroduction site.
410

Responses to long-term fertilization and burning: impacts on nutrient dynamics and microbial composition in a tallgrass prairie

Carson, Michael A. January 1900 (has links)
Master of Science / Department of Biology / John M. Blair / Anthropogenic activities impact ecosystems in numerous direct and indirect ways, affecting the cycling of carbon (C) and nitrogen (N) on local, regional and global scales. North America tallgrass prairie is an ecosystem profoundly altered by anthropogenic activities, with most native prairie converted to alternate land uses or heavily impacted by other environmental changes. While aboveground responses to anthropogenic drivers have received much attention, the responses of belowground biota, ecological processes, and nutrient allocation to land management and environmental change are poorly documented, especially over long timeframes. This research builds upon a long-term experiment (the Belowground Plot Experiment) initiated in 1986 at Konza Prairie Biological Station (Manhattan, KS). I utilized a subset of treatments to address the effects of annual burning vs. fire suppression and/or chronic N additions on soil C and N dynamics and microbial communities in tallgrass prairie. I measured a suite of soil variables related to C and N cycling during the 2012 growing season, including total soil C and N, microbial biomass C and N, in situ net N mineralization, potential N mineralization, in situ CO2 efflux, and potentially mineralizable soil C. I also assessed changes in microbial community composition using microbial phospholipid fatty acids (PLFA) profiles. Annual burning significantly (p≤0.05) increased the soil C:N ratio and in situ CO2 efflux, while decreasing potential ammonification and nitrification rates. Annual burning also increased total PLFA mass and relative abundance of fungi. Chronic N addition (100 kg N ha-1 year-1) significantly reduced the soil C:N ratio, while increasing total soil N and potential nitrification and ammonification rates. Chronic N addition reduced potential C mineralization, microbial biomass C and N, and altered microbial community composition by increasing abundance of bacterial PLFAs and reducing fungal PLFAs. Sampling date also significantly affected many variables. These results indicate that different fire regimes and chronic N enrichment over decades affects soil C and N pools and transformations, as well as microbial biomass and composition. In total, this study highlights the importance of long-term ecological research and identifies likely changes in tallgrass prairie nutrient dynamics and soil microbial communities under increased N and frequent burning.

Page generated in 0.0299 seconds