• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 362
  • 230
  • 38
  • 30
  • 30
  • 24
  • 21
  • 21
  • 21
  • 21
  • 21
  • 21
  • 11
  • 5
  • 4
  • Tagged with
  • 992
  • 348
  • 198
  • 187
  • 186
  • 155
  • 104
  • 85
  • 82
  • 80
  • 73
  • 68
  • 67
  • 67
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Florida's Pillar Coral (Dendrogyra cylindrus): The Roles of the Holobiont Partners in Bleaching, Recovery, and Disease Processes

Lewis, Cynthia Fairbank 03 December 2018 (has links)
The iconic pillar coral, Dendrogyra cylindrus, is one of five Caribbean species listed in 2014 under the US Federal Endangered Species Act because of its extreme low abundance and continued decline in US waters. Until recently, little was known about the demographics or genetic diversity of Florida’s D. cylindrus population. This study represents the first time two holobiont partners (coral animal and associated photosynthetic algal endosymbionts) have been closely examined, spatially and temporally, in this little-studied species. The aim was to explore the influences of coral animal genotypes, mutualistic photosynthetic algal strains, and hyperthermal stress on bleaching and disease processes, resistance, and recovery through two consecutive hyperthermal events on the Florida Reef Tract (FRT) in 2014 and 2015. Through geographically stratified, triannual assessments and tissue sampling of D. cylindrus colonies across three regions of the FRT from April 2014 to April 2016, I compared genotypic identities of the coral animal to bleaching and disease status and recovery. Additionally, I characterized the algal endosymbionts (Symbiodiniaceae family) in D. cylindrus between regions of the FRT using Illumina amplicon sequencing of the partial chloroplast 23S rDNA Domain V gene and correlated them to differential responses during bleaching and recovery. Finally, I examined the effects of hyperthermal stress on disease prevalence and changes in disease susceptibility in D. cylindrus throughout two consecutive hyperthermal events in 2014 and 2015. Genotypic differences in D. cylindrus were associated with full or partial bleaching and/or disease resistance associated with some genets. Additionally, this study characterized unexpected diversity in the Symbiodiniaceae community within D. cylindrus and a site-specific, species-level switch in endosymbionts associated with acquired bleaching resistance during the 2015 hyperthermal event. Finally, this study demonstrated that two consecutive hyperthermal events were associated with an increase in prevalence of white plague in D. cylindrus and contributed to its susceptibility to black band disease, documented for the first time on the FRT. Through understanding the response of the D. cylindrus holobiont partners to biotic and abiotic stressors, such as hyperthermal bleaching and associated diseases, we gained valuable insights into how this threatened species may respond to a changing climate.
142

Ecological genetic connectivity between and within southeast African marginal coral reefs.

Montoya-Maya, Phanor H. 17 June 2014 (has links)
Marine protected areas (MPAs) have been established along the East African coast to protect coral communities from human and natural disturbance. Their success is dependent on the degree to which resource populations are self-seeding or otherwise connected. Estimates of contemporary gene flow on or between south-east African reefs are thus required to reveal the interdependence of the South African coral communities and those to the north. Accordingly, the ecologically relevant (1 or 2 generations) connectivity of two broadcast-spawning corals, Acropora austera and Platygyra daedalea, was assessed on reefs in the region, from the Chagos Archipelago to Bazaruto Island in Mozambique and Sodwana Bay in South Africa, using hyper-variable genetic markers. Analysis of genetic diversity and differentiation provided evidence for the existence of four discrete genetic populations of A. austera and five of P. daedalea in the sampled area. Higher genetic diversity was found on northern South African reefs (Nine-mile Reef and Rabbit Rock) and migration patterns inferred from assignment tests suggested that, at ecological time scales, South African reefs are disconnected from those in Mozambique and might originate from a source of gene flow that was not sampled. The analysis of fine-scale genetic connectivity conducted on Two-mile Reef (TMR) demonstrated the existence of significant spatial genetic structure at the reefal scale that might be related to the non-random dispersal of coral larvae, putatively explaining the genetic discontinuity observed in the region. Altogether, the results are consistent with the isolation observed in other studies using less variable markers, and support the hypothesis that there is demographic discontinuity between the coral populations along the south-east African coast. More importantly, Acropora austera and P. daedalea represent different life strategies in the South African reef communities yet manifested similar genetic patterns, suggesting that these corals are responding similarly to forces that are driving genetic connectivity in the region. For management purposes, the genetically distinct populations identified at each of the spatial scales analysed in this study may correspond to management units, or evolutionarily significant units. Furthermore, since some reefs appear to act as “landing-sites” for migrants (Nine-mile Reef) and there is evidence of significant within-reef genetic structure (TMR), an adaptive management framework would be the best option for the MPA in the region. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2014.
143

Understanding and monitoring the consequences of climate change and resilience-based management for coral reefs

Maynard, Jeffrey A. January 2010 (has links)
Climate change is now widely regarded as the single greatest threat to coral reefs. Climate change poses a range of different threats and reef ecosystems are widely reported as being amongst the first ecosystems to be severely affected by increases in global average temperatures. Coral reef managers responding effectively to the climate change threat will require research and monitoring, communication, impact mitigation and informed planning. Aspects of this thesis cover all of those working areas.
144

Cross-shelf coral reef biodiversity : does data and ecological theory fit with habitat-based species conservation models?

Radford, Benedict January 2007 (has links)
[Truncated abstract] Selection of priority areas for Marine Park conservation is often compromised by the lack of comprehensive biodiversity data and the resources and expertise necessary to gain this information directly by sampling. One cost effective alternative is the use of species groups or indicator species as surrogates for total biodiversity. However use of these surrogates requires an ecological understanding of how they reflect biodiversity gradients. A framework for unravelling these relationships has been suggested that involves relating species biodiversity to different and competing ecological models using appropriate statistical analysis. I use this framework to explore coral species biodiversity over a range of environmental gradients encompassing the North West Shelf of Australia and the Great Barrier Reef in North East Australia. ... I assessed physiological responses of corals to physical factors to corroborate crossshelf patterns in species biodiversity. Finally, I investigated to what extent coral cooccurrence based species groups (or guilds) can be used as surrogates for total coral biodiversity. The major findings of this thesis were: i) coral biodiversity along cross-shelf environments was highly correlated to specific gradients of abiotic reef conditions; ii) larval modelling indicates the potential for significant connectivity across continentalshelf environments such that differences in species distribution are not simply as a result of self seeding. iii) similar correlative patterns were demonstrated for coral species that occur along comparable abiotic gradients in reef areas of both Eastern and Western Australia, suggesting a causal relationship between the physical environment and coral biodiversity; iv) coral physiological parameters measured using lipid fractions independently corroborated the hypothesis that there is a biological basis for observed coral distributions; v) reef coral communities are not highly structured across abiotic physical gradients and biodiversity across the shelf increases as conditions become suitable for a wider range of species; vi) total coral biodiversity can be estimated very accurately (within r2 values ranging from 0.75 to 0.90) using a small number (15-30) of optimally chosen indictor species using the randomForest statistical method. These results suggest coral biodiversity over cross-shelf environments conforms most closely to the
145

Impacts of local and global stressors on coral biodiversity

Maucieri, Dominique 31 August 2021 (has links)
Global biodiversity losses are being driven by human actions, and coral reef communities are not immune. Local anthropogenic stress and global climate change are rapidly changing coral reefs, through coral bleaching and mortality. How these stressors impact the biodiversity and community structure of corals on tropical reefs will not only affect the communities of fish and invertebrates that rely on coral reefs, but they could have lasting impacts on ecosystem functioning. The record-breaking marine heatwave caused by the 2015/2016 El Niño was superimposed on a strong local human disturbance gradient on Kiritimati, Kiribati, allowing for the investigation of how these combined disturbances affect coral communities. In Chapter 2, I investigated how soft coral cover varies with these disturbances and natural environmental factors, using benthic photoquadrats collected on Kiritimati’s forereefs from 2007 to 2019. Additionally, I conducted a literature review to establish what is already known about soft coral and disturbances, to compare Kiritimati data to that found in the literature. I show that soft corals are grossly understudied, with only a fifth (19/94) of coral studies presenting any results of heat stress effects on soft corals, and even fewer (5%) presenting taxonomic-specific results. On Kiritimati, prior to the 2015/2016 El Niño, soft corals were more common at sheltered sites with lower net primary productivity, but no effect of local disturbance was found. Soft corals were, however, highly vulnerable to heat stress, with a documented complete loss after the heatwave. I also show that soft coral skeletons persisted for years after the heatwave and provided substrate for hard coral recruitment. In Chapter 3, I examined how local and global stressors affected coral diversity, using community composition photoquadrat data collected from 2013 to 2017, and developed a conceptual framework for understanding effects of multiple stressors, when there are both discrete and continuous stressors. Coral alpha diversity (assessed as Hill diversity) exhibited a non-linear relationship with local anthropogenic stress, peaking at intermediate levels, and was negatively impacted by the marine heatwave, such that sites tended to decrease in both coral richness and evenness. Coral beta diversity (assessed as community composition turnover) was significantly impacted by both stressors, but sites exposed to higher levels of anthropogenic stress tended to experience less turnover during the heatwave. Explicitly considering the relationships between the two stressors, I found that it varied depending on the intensity of anthropogenic stress and the diversity metric (i.e., richness vs. composition) examined. For Hill-Richness, I found a tipping point at moderate levels of local anthropogenic stress, below which there was an additive response and above which the response tended towards synergy. In contrast, for Hill-Shannon and Hill-Simpson the responses were additive and there was an antagonistic effect between stressors for community composition. By using the frameworks outlined in this thesis for reporting changes to soft coral due to disturbances, and examining relationships between discrete and continuous stressors, we may better predict how reefs will look in the future and what actions will conserve and assist in the recovery of coral reef ecosystems. / Graduate / 2022-08-10
146

Fish assemblages associated with shallow, fringing coral communities in sub-tropical Hong Kong: speciescomposition, spatial and temporal patterns: y Andrew S. Cornish.

Cornish, Andrew S. January 2000 (has links)
published_or_final_version / Ecology and Biodiversity / Doctoral / Doctor of Philosophy
147

The biogeography of coastal fish communities and associated habitats in southern Arabia

Kemp, Jeremy Mark January 1999 (has links)
No description available.
148

Genetic diversity and photosynthetic characteristics of zooxanthellae (Symbiodinium)

Savage, Anne Margaret January 2001 (has links)
No description available.
149

Towards the total synthesis of the pseudopterosins

Wilden, Jonathan D. January 2000 (has links)
No description available.
150

The nature and significance of pigments in the symbiotic algae of corals

Ambarsari, Ireng January 1998 (has links)
No description available.

Page generated in 0.0525 seconds