• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 122
  • 22
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 545
  • 104
  • 53
  • 53
  • 52
  • 52
  • 46
  • 44
  • 40
  • 40
  • 39
  • 38
  • 36
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Remote sensing of vegetation characteristics and spatial analysis of pyric herbivory in a tallgrass prairie

Ling, Bohua January 1900 (has links)
Doctor of Philosophy / Department of Geography / Douglas Goodin / Quantitative remote sensing provides an effective way of estimating and mapping vegetation characteristics over an extensive area. The spatially explicit distribution of canopy vegetative properties from remote sensing imagery can be further used for studies of spatial patterns and processes in grassland systems. My research focused on remote sensing of grassland vegetation characteristics and its applications to spatial analysis of grassland dynamics involving interactions between pyric herbivory and vegetation heterogeneity. In remote sensing of vegetation characteristics, (1) I estimated the foliar pigments and nutritional elements at the leaf level using hyperspectral data. The foliar pigments, chlorophylls and carotenoids, were retrieved by inverting the physical radiative transfer model, PROSPECT. The nutritional elements were modeled empirically using partial least squares (PLS) regression. Correlations were found between the leaf pigments and nutritional elements. This provided insight into the use of pigment-related vegetation indices as a proxy of the plant nutritional quality. (2) At the canopy level, I assessed the use of the broadband vegetation indices, normalized difference vegetation index (NDVI) and green-red vegetation index (GRVI), in detecting vegetation quantity (LAI) and quality (leaf and canopy chlorophyll concentrations). The relationships between vegetation indices and vegetation characteristics were examined in the physical model, PROSAIL, and validated by a field dataset collected from a tallgrass prairie. NDVI showed high correlations with LAI and canopy chlorophylls. GRVI performed even better than NDVI in estimating LAI. A new index GNVI (green-red normalized vegetation index) that combined NDVI and GRVI was proposed to extract leaf chlorophyll concentration. These findings showed the potential of using broadband vegetation indices from multispectral remote sensors to monitor vegetation quantity and quality over a wide spatial extent. In the spatial analysis, I examined interactions between pyric herbivory and grassland heterogeneity at multiple scales from the remote sensing imagery. (3) At a coarse, watershed level, I evaluated effects of fire and large herbivores on the spatial distribution of canopy nitrogen. It was found that the interactive effects of fire and ungulate grazing were present in the watersheds burnt in spring, where a high level of ungulate grazing reduced vegetation density, but promoted canopy heterogeneity. Two grazer species, bison and cattle, were compared. Differences in the vegetation canopy between sites with bison and cattle were observed, which may be related to differences in the grazing intensity, forage behavior and habitat selection between the two grazer species. (4) At a fine, patch level (30 m), bison forage pattern was examined associated with canopy nitrogen heterogeneity. Bison preference for patches with high canopy nitrogen was evident in May. Later in June – September, bison tended to avoid sites with high canopy nitrogen. Vegetation heterogeneity showed significant influences on bison habitat selection in June. Bison preferred sites with low variance in canopy nitrogen, where the patch types were highly aggregated and equitably proportioned.
222

Biotic and abiotic effects on biogeochemical fluxes across multiple spatial scales in a prairie stream network

Trentman, Matthew T. January 1900 (has links)
Master of Science / Division of Biology / Walter K. Dodds / Understanding the variability of ecological processes across spatial scales is a central issue in ecology, because increasing scale is often associated with increasing complexity. In streams, measurements of biogeochemical fluxes are important for determining ecosystem health and the downstream delivery of nutrients, but are often collected at scales with benthic areas measured in spatial areas from ~10 cm[superscript]2 to ~100 m[superscript]2 (referred to here as patch and reach, respectively), which are smaller than the scale that management decisions are made. Both biotic and abiotic factors will be important when attempting to predict (i.e. scale) biogeochemical rates, but few studies have simultaneously measured rates and their primary drivers at different spatial scales. In the first chapter, I used a conceptual scaling framework to evaluate the ability to additively scale biogeochemical rates by comparing measurements of ecosystem respiration (ER) and gross primary production (GPP) from patch to reach-scales across multiple sites over a two-year period in a prairie stream. Patch-scale measurements with and without fish (biotic factors) and abiotic factors measured simultaneously with metabolic rates suggest that abiotic conditions are stronger drivers of these rates. Patch-scale rates significantly overestimated reach rates for ER and GPP after corrections for habitat heterogeneity, temperature and light, and a variety of stream substrata compartments. I show the importance of determining abiotic and biotic drivers, which can be determined through observational or experimental measurements, when building models for scaling biogeochemical rates. In the second chapter, I further examined patch-scale abiotic and biotic drivers of multiple biogeochemical rates (ER, GPP, and ammonium uptake) using path analyses and data from chapter 2. Total model-explained variance was highest for ER (65% as R[superscript]2) and lowest for GPP and ammonium uptake (38%). Fish removal directly increased ammonium uptake, while all rates were indirectly affected by fish removal through changes in either FBOM and /or algal biomass. Significant paths of abiotic factors varied with each model. Large-scale processes (i.e. climate change and direct anthropogenic disturbances), and local biotic and abiotic drivers should all be considered when attempting to predict stream biogeochemical fluxes at varying spatial scales.
223

Vegetation characteristics and lesser prairie chicken responses to land cover types and grazing management in western Kansas

Kraft, John Daniel January 1900 (has links)
Master of Science / Department of Biology / David A. Haukos / In the southern Great Plains, the lesser prairie-chicken (Tympanuchus pallidicinctus; hereafter LEPC), an obligate grassland species, has experienced significant population declines and range contractions with subsequent conservation concern. Management actions often use land cover types to make inference about habitat quality. Relatively little information is available related to grazed rangelands to guide conservation. The influences of land cover types and livestock grazing on LEPC habitat selection have not been researched extensively in western Kansas. I evaluated the influence of land cover types and grazing management on vegetation characteristics, habitat selection, and nest/adult survival of LEPC in western Kansas. Females were captured and radio-marked to monitor habitat use, nest success, and adult survival. Grazing and vegetation data were collected via producer correspondence and vegetation surveys, respectively. Vegetation composition and structure differed across land cover types, which can be used to make inferences about LEPC habitat quality. Habitat selection analyses corroborated the importance of breeding habitat in close proximity to leks (<3 km) and identified land cover types selected for nesting (Conservation Reserve Program, Limy Upland, Saline Subirrigated) and brooding (Conservation Reserve Program, Red Clay Prairie, Sands, Sandy Lowland). Conservation Reserve Program patches positioned near rangelands contributed to LEPC reproductive success in northwest Kansas. In grazed lands, LEPC selected habitat close to leks (<3 km) and large pastures (>400 ha), exhibiting low-moderate stocking densities (<0.4 AU/ha), and low-moderate levels of deferment during the grazing season (60-100 days). Nest site selection was negatively influenced by increasing distance from a lek and grazing pressure. Daily nest survival rates were negatively influenced by increasing grazing pressure and high levels of stocking density. Annual adult female survival was negatively influenced as forage utilization (% forage removed) increased. Heterogeneity (coefficient of variation and standard deviation) of visual obstruction was decreased at stocking densities > 0.26 AU/ha. Future conservation actions should consider the potential of land cover types to create adequate vegetation structure, and manage rangelands with low-moderate stocking densities and deferment and greater pasture areas. The relationship between habitat selection and proximity of lek sites (< 5 km) should be used to identify quality LEPC habitat.
224

Physiological and morphological responses of grass species to drought

Bachle, Seton January 1900 (has links)
Master of Science / Department of Biology / Jesse B. Nippert / The impacts of climate change over the next 100 years on North American grasslands are unknown. Climate change is projected to increase rainfall and seasonal temperature variability, leading to increased frequency of drought and decreased rainfall amounts for many grassland locations in the central Great Plains of North America. To increase our ability to predict the effects of a changing climate, I measured multiple morphological and physiological responses from a diverse suite of C3 and C4 grasses. Due to varying characteristics associated with the different photosynthetic pathways, these grass species respond differently to altered temperature and precipitation. I monitored grass physiology and microanatomy in conjunction with varying watered availability to replicate drought. In the second chapter, I observed leaf-level physiology and root level morphology of C3 and C4 grasses when exposed to 100% water reduction. Results indicated that response to water reduction are not always dependent on the photosynthetic pathway. Root-level morphological measurements were found to vary significantly between species in the same genus; F. ovina had the highest specific root length (SRL), which is an indicator of tolerance to environmental variability. Results also indicated that grasses of interest have thresholds that when passed result in a photosynthetically inactive plant; however it was shown that they are able to recover to near pre-drought gas exchange rates when water is re-applied. The third chapter investigated both leaf-level physiology and morphology in dominant C4¬ grasses across Kansas’ rainfall gradient over the growing season. I hypothesized that variation within a species’ physiology would be greater than its’ morphology. I also hypothesized that morphology would predict variability in a species physiological response to changes in climate. This research discovered within a location and species, leaf morphology is fixed across the growing season. Strong correlations between leaf physiology and morphology were observed, however, the strength and relationship changed among the species compared. A. gerardii and P. virgatum exhibited opposing relationships when comparing their photosynthetic rates to the amount of bundle sheath cells. This result highlights strong species-specific relationship between physiology and morphology. My results illustrate the importance of utilizing plant physiology and morphology to understand how grasses may respond to future climate change scenarios.
225

Regional variation in demography, distribution, foraging, and strategic conservation of lesser prairie-chickens in Kansas and Colorado

Sullins, Daniel S. January 1900 (has links)
Doctor of Philosophy / Department of Biology / David A. Haukos / The lesser prairie-chicken (Tympanuchus pallidicinctus) is 1 of 3 prairie-grouse species in North America. Prairie-grouse have undergone local or widespread declines due to a loss of habitat through conversion to row crop agriculture, anthropogenic development, and alteration of ecological drivers that maintain quality grasslands. For lesser prairie-chickens, habitat loss and declines were deemed significant for listing as threatened under the Endangered Species Act in 2014. Despite a judge vacating the listing decision in 2015, the lesser prairie-chicken remains a species of concern. Conservation plans are currently being implemented and developed. To maximize the effectiveness of efforts, knowledge of the distribution of lesser prairie-chickens, regional demography, foods used during critical life-stages, and where to prioritize management is needed. To guide future conservation efforts with empirical evidence, I captured, marked with transmitters, and monitored female lesser prairie-chickens in Kansas and Colorado during 2013–2016 (n =307). I used location data to predict the distribution of habitat. Encounter data from individuals were used to estimate vital rates and integrated into a matrix population model to estimate population growth rates (λ). The matrix model was then decomposed to identify life-stages that exert the greatest influence on λ and vital rate contributions to differences in λ among sites. After assessing demography, I examined the diet of adults and chicks during critical brood rearing and winter periods using a fecal DNA metabarcoding approach. Overall, potential habitat appears to compromise ~30% of the presumed lesser prairie-chicken range in Kansas with most habitat in the Mixed-Grass Prairie Ecoregion. Within occupied sites, populations were most sensitive to factors during the first year of life (chick and juvenile survival), however, the persistence of populations through drought may rely on adult survival. Among regional populations, breeding season, nest, and nonbreeding season survival rates contributed most to differences in λ among sites, breeding season survival contributed to differences in λ among more and less fragmented sites. During critical life-stages, diets were comprised of arthropod and plant foods. Among 80 readable fecal samples, 35% of the sequences were likely from Lepidoptera, 26% from Orthoptera, 14% from Araneae, and 13% from Hemiptera. Plant sequences from 137 fecal samples were comprised of genera similar to Ambrosia (27%) Latuca or Taraxacum (10%), Medicago (6%), and Triticum (5%). Among cover types, lesser prairie-chickens using native grasslands consumed a greater diversity of foods. Last, promising conservation options include the conversion of cropland to grassland through the Conservation Reserve Program (CRP) and tree removal in mixed-grass prairie landscapes. Lesser prairie-chickens mostly used CRP during nesting and the nonbreeding season, during drier periods, and in drier portions of their distribution. Strategic CRP sign-up and tree removal could recover >60,000 ha and~100,000 ha of habitat respectively. In summary, conservation that targets management in areas within broad scale habitat constraints predicted will be most beneficial. In areas occupied by lesser prairie-chickens, management that increases brood survival in large grasslands having optimal nesting structure will elicit the strongest influence on population growth and will likely be the most resilient to stochastic drought-related effects.
226

Community dynamics of rodents, fleas and plague associated with black-tailed prairie dogs

Thiagarajan, Bala January 1900 (has links)
Doctor of Philosophy / Department of Biology / Jack F. Cully, Jr. / Black-tailed prairie dogs (Cynomys ludovicianus) are epizootic hosts for plague (Yersinia pestis); however, alternate enzootic hosts are important for the maintenance of the pathogen. We determined small rodents and prairie dog associations and quantified rodent and flea relationships in the presence and absence of prairie dog colonies and plague. We identified potential alternate hosts and flea vectors for the maintenance and transmission of plague in the prairie ecosystem. This is the first multi-year study to investigate associations between prairie dogs, rodents and fleas across the range of the black-tailed prairie dog. Few rodent species associated with black-tailed prairie dogs and were found to be highly abundant on colonies. Rodent species implicated in plague were present at study areas with and without plague. Peromyscus maniculatus and Onychomus leucogaster, two widely occurring species, were more abundant in areas with a recent history of plague. Flea community characteristics varied within each study area in the presence and absence of prairie dogs. Based on flea diversity on rodents, and the role of rodents and fleas in plague, we identified P. maniculatus and O. leucogaster and their associated fleas, Aetheca wagneri, Malareus telchinus, Orchopeas leucopus, Peromyscopsylla hesperomys, and Pleochaetis exilis to be important for the dynamics of sylvatic plague in our study areas. Peromyscus maniculatus and O. leucogaster were consistently infected with Bartonella spp., another blood parasite. Presence of prairie dog fleas on other rodents at both off and on prairie dog colonies suggests the potential for intra and interspecific transmission of fleas between rodent hosts, and between other small rodents and prairie dogs.
227

Limitations to plant diversity and productivity in restored tallgrass prairie

McCain, Kathryn Nicole Schmitt January 1900 (has links)
Doctor of Philosophy / Department of Biology / John M. Blair / Approximately 96% of native tallgrass prairie in North America has been lost, which accentuates the need for effective methods to restore the structure and function of these degraded ecosystems. Many prairie restorations aim to restore grass and forb species in proportions reflecting plant species diversity in native prairie. A target grass-forb species mixture is typically chosen at the onset of restoration, but often, grasses become excessively dominant and forbs are underrepresented as the community develops. Several studies have examined the potential for increasing forb cover and diversity in newly restored grasslands, but few studies have assessed factors limiting forb cover and diversity in well-established grass-dominated prairie restorations. The primary objective of this research was to assess the potential for enhancing plant species diversity and productivity in an established grass-dominated prairie restoration by selective removals of dominant grass species, and by manipulating resources (soil nutrients, light availability) or mycorrhizal interactions. A 7-year old grass-dominated restoration was used to evaluate plant and soil responses to manipulations in three separate studies. The first study examined the potential suppressive effects of dominant grasses on plant diversity by reducing the cover and biomass of two dominant grass species, Andropogon gerardii and Panicum virgatum. After 3 years, the removal of A. gerardii increased species richness and diversity, which was correlated with increased light availability, but not changes in soil resources. The second study examined the responses of restored grassland communities to long-term manipulation of soil resources (nutrient availability or soil depth), and to aboveground biomass removal via mowing. The long-term manipulation of soil resources did not alter plant species diversity, but nitrogen and light availability were important factors regulating plant productivity. The third study assessed the effects of manipulating arbuscular mycorrhizal (AM) fungi, through the use of either commercial inoculum or fungicide, on plant communities in restored prairie. Mycorrhizal suppression reduced grass productivity, suggesting that fungicide may be useful for enhancing diversity of restored prairies that are dominated by obligate mycotrophic grasses. In total, these studies suggest that competition between dominant grasses and subordinate forbs limits plant diversity in restored tallgrass prairie.
228

Contemporary land-use change structures carnivore communities in remaining tallgrass prairie

Wait, Kyle January 1900 (has links)
Master of Science / Department of Horticulture and Natural Resources / Adam A. Ahlers / The Flint Hills ecoregion in Kansas, USA, represents the largest remaining tract of native tallgrass prairie in North America. Anthropogenic landscape change (e.g., urbanization, agricultural production) is affecting native biodiversity in this threatened ecosystem. Our understanding of how landscape change affects spatial distributions of carnivores (i.e., species included in the Order ‘Carnivora’) in this ecosystem is limited. I investigated the influence of landscape structure and composition on site occupancy dynamics of 3 native carnivores (coyote [Canis latrans]; bobcat [Lynx rufus]; and striped skunk [Mephitis mephitis]) and 1 nonnative carnivore (domestic cat, [Felis catus]) across an urbanization gradient in the Flint Hills during 2016-2017. I also examined how the relative influence of various landscape factors affected native carnivore species richness and diversity. I positioned 74 camera traps across 8 urban-rural transects in the 2 largest cities in the Flint Hills (Manhattan, pop. > 55,000; Junction City, pop. > 31,000) to assess presence/absence of carnivores. Cameras were activated for 28 days in each of 3 seasons (Summer 2016, Fall 2016, Winter 2017) and I used multisession occupancy models and an information-theoretic approach to assess the importance of various landscape factors on carnivore site occupancy dynamics. Based on previous research in other ecosystems, I expected a negative relationship between both coyote and bobcat occurrence with increasing urban development but a positive relationship for domestic cat and skunk occurrence with increasing urban landcover. I also predicted grassland landcover to positively influence site occupancy for all carnivores except domestic cats. I expected that coyotes, the apex predator in this ecoregion, may limit domestic cat distributions through intraguild competition. Thus, I predicted a negative relationship between site occupancy of domestic cats and coyote occupancy probabilities. Because urban development results in habitat loss and fragmentation, I expected native species richness and diversity to decline with increased urban development. Coyotes had lower occupancy and colonization rates in areas with increased urban landcover. Bobcat occupancy was insensitive to urban landcover and colonization rates were greater in grassland landcover and row-crop agriculture fields. Site occupancy of bobcats was highly influence by forested areas and greater edge densities. Contrary to my hypothesis, striped skunk occupancy and colonization rates were negatively related to urban landcover. As expected, domestic cats were more likely to occur in and colonize sites with increased urban development and less likely to occur at sites with high coyote occupancy probabilities. Native carnivore species diversity and richness were negatively related to urban landcover. Occupancy dynamics of carnivores were shown to be influenced by landscape structure and composition as well as intraguild interactions. My results show urban landcover has a strong influence on the spatial distributions of carnivores in the northern extent of the Flint Hills.
229

The Dawson route : a phase of westward expansion

Litteljohn, Bruce M January 1967 (has links)
THE DAWSON ROUTE: A PHASE OF WESTWARD EXPANSION The basic problem attacked in this thesis is the general lack of readily available knowledge concerning the Dawson Route. While there is much material in manuscript collections and in government publications, little attention has been paid the route in other places. Several scholars have dealt briefly with particular aspects of the route, but no person has treated it in a comprehensive fashion. This thesis sets out to rectify this situation. It has been written in the belief that a short general history of the Dawson Route — dealing with its origins, development, use, and significance — is justified and will be of some interest. Secondary problems have emerged in the course of this inquiry. In coping with these, the writer has attempted to describe the physical nature of the route and the natural obstacles overcome in its construction, and to tell why and how it was built. He has also tried to tell who used it, what it was like to travel the route during the 1870's, and to describe its relationship to other transportation routes. Finally, he has attempted to explain why it declined and to assess its significance. The thesis, in short, is a brief general history of the Dawson Route. The research for this paper has been carried forward at libraries and archives in Ottawa, Toronto, Port Arthur, St. Paul, Winnipeg, and Atikokan. Because physiography looms large in the story of the Dawson Route, a number of field trips into the area it traversed have been undertaken. Again, because the route was a physical thing, considerable effort has been expended in locating and reproducing maps and pictorial material to illustrate its use, its characteristics, and the country through which it passed. The writer has benefitted from involvement in archaeological and historical projects undertaken along the route in recent years. Several conclusions have grown out of this inquiry. In large degree, the Dawson Route was an extension and refinement of a long tradition of water transportation in the area between Lake Superior and the Red River. It was developed in the face of considerable physical obstacles and may be viewed as a triumph over those obstacles. Concern for the economic and political future of the British Northwest inspired its construction. This concern was largely a result of the expansionist temper of Americans, and particularly Minnesotans. Combined with this were transportation developments and physical expansion in Minnesota, as well as the activities of the Canadian Party in Red River, which also worked to encourage the construction of a Canadian transportation route. The Dawson Route served a useful military- political purpose in 1870, but its success as an emigrant route to attract settlers to the Red River area (for which it was primarily designed) was severely limited. It declined because of inherent weaknesses and because of developments in competing transportation facilities, both north and south of the international boundary. The relationship of the Dawson Route to the Canadian Pacific Railway was closer than has been suspected, and the fact that it survived for even a short period after 1873 was largely owing to the railway policy of Prime Minister Alexander Mackenzie. In a sense, the route was obsolete from the day it opened for emigrant travel in 1871. Nonetheless, it served a useful purpose and appears to have reflected the willingness of Canadians to marshall the resources of the new nation in the interests of an expansive national purpose. / Arts, Faculty of / History, Department of / Graduate
230

To be and build the glorious world : the educational thought and practice of Watson Thomson, 1899-1946

Welton, Michael Robert January 1983 (has links)
"To Be and Build the Glorious World" examines the educational thought and practice of Watson Thomson, the most passionate and controversial of the activist educators who worked in Canada from the mid-1930s to the mid-1940s. Using a contextual biographical methodology, the evolution of Thomson's motivational structure and world-view is examined. The opening chapters identify the educative forces that shaped Thomson's transformative-communitarian educational philosophy. Subsequent chapters analyze the interplay of Thomson's transformative- communitarian vision with the Canadian context—Alberta, Manitoba and Saskatchewan. A critical examination of Thomson's educational thought and practice shows that he adopted a consistent modus operandi. For Thomson, study-groups were to be spearheads of social change. Guided by the vision of a new, fully co-operative society, these groups would gradually initiate a social and intellectual revolution. Thomson's spearhead theory, put into practice in many contexts, was most successful in Saskatchewan. There he found support in a left populist culture. Thomson's accomplishments as an adult educator were many. First, he had a significant impact on many individual lives, helping people to see life as an indivisible whole. Second, Thomson participated in, and initiated, a remarkable range of educational ventures, some successful, others not. Thomson's educational thought and practice raises important questions on the relationship between nonformal education, social movements and policy outcomes. Indeed, a close study of Watson Thomson's career reveals the existence of a gentle, but persistent movement towards cultural revitalization in Western Canada in the 1930s and 1940s. Further, it suggests the presence of some unexpected avant-garde themes in the life of the Canadian left. This thesis, then, "explains" Watson Thomson's educational thought and practice contextually. In so doing, it also offers an explanation of the previously undocumented histories of adult education in three prairie provinces. / Education, Faculty of / Curriculum and Pedagogy (EDCP), Department of / Graduate

Page generated in 0.0219 seconds