• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modeling Turbulent Dispersion and Deposition of Airborne Particles in High Temperature Pipe Flows

Gnanaselvam, Pritheesh January 2020 (has links)
No description available.
12

Kinematics and Heat Budget of the Leeuwin Current

Domingues, Catia Motta, Catia.Domingues@csiro.au January 2006 (has links)
This study investigates the upper ocean circulation along the west Australian coast, based on recent observations (WOCE ICM6, 1994/96) and numerical output from the 1/6 degree Parallel Ocean Program model (POP11B 1993/97). Particularly, we identify the source regions of the Leeuwin Current, quantify its mean and seasonal variability in terms of volume, heat and salt transports, and examine its heat balance (cooling mechanism). This also leads to further understanding of the regional circulation associated with the Leeuwin Undercurrent, the Eastern Gyral Current and the southeast Indian Subtropical Gyre. The tropical and subtropical sources of the Leeuwin Current are understood from an online numerical particle tracking. Some of the new findings are the Tropical Indian Ocean source of the Leeuwin Current (in addition to the Indonesian Throughflow/Pacific); the Eastern Gyral Current as a recirculation of the South Equatorial Current; the subtropical source of the Leeuwin Current fed by relatively narrow subsurface-intensified eastward jets in the Subtropical Gyre, which are also a major source for the Subtropical Water (salinity maximum) as observed in the Leeuwin Undercurrent along the ICM6 section at 22 degrees S. The ICM6 current meter array reveals a rich vertical current structure near North West Cape (22 degrees S). The coastal part of the Leeuwin Current has dominant synoptic variability and occasionally contains large spikes in its transport time series arising from the passage of tropical cyclones. On the mean, it is weaker and shallower compared to further downstream, and it only transports Tropical Water, of a variable content. The Leeuwin Undercurrent carries Subtropical Water, South Indian Central Water and Antarctic Intermediate Water equatorward between 150/250 to 500/750 m. There is a poleward flow just below the undercurrent which advects a mixed Intermediate Water, partially associated with outflows from the Red Sea and Persian Gulf. Narrow bottom-intensified currents are also observed. The 5-year mean model Leeuwin Current is a year-round poleward flow between 22 degrees S and 34 degrees S. It progressively deepens, from 150 to 300 m depth. Latitudinal variations in its volume transport are a response to lateral inflows/outflows. It has double the transport at 34 degrees S (-2.2 Sv) compared to at 22 degrees S (-1.2 Sv). These model estimates, however, may underestimate the transport of the Leeuwin Current by 50%. Along its path, the current becomes cooler (6 degrees C), saltier (0.6 psu) and denser (2 kg m -3). At seasonal scales, a stronger poleward flow in May-June advects the warmest and freshest waters along the west Australian coast. This advection is apparently spun up by the arrival of a poleward Kelvin wave in April, and reinforced by a minimum in the equatorward wind stress during July. In the model heat balance, the Leeuwin Current is significantly cooled by the eddy heat flux divergence (4 degrees C out of 6 degrees C), associated with mechanisms operating at submonthly time scales. However, exactly which mechanisms it is not yet clear. Air-sea fluxes only account for ~30% of the cooling and seasonal rectification is negligible. The eddy heat divergence, originating over a narrow region along the outer edge of the Leeuwin Current, is responsible for a considerable warming of a vast area of the adjacent ocean interior, which is then associated with strong heat losses to the atmosphere. The model westward eddy heat flux estimates are considerably larger than those associated with long lived warm core eddies detaching from the Leeuwin Current and moving offshore. This suggests that these mesoscale features are not the main mechanism responsible for the cooling of the Leeuwin Current. We suspect instead that short lived warm core eddies might play an important role.
13

Neural Network Based Model Predictive Control of Turbulent Gas-Solid Corner Flow

Wredh, Simon January 2020 (has links)
Over the past decades, attention has been brought to the importance of indoor air quality and the serious threat of bio-aerosol contamination towards human health. A novel idea to transport hazardous particles away from sensitive areas is to automatically control bio-aerosol concentrations, by utilising airflows from ventilation systems. Regarding this, computational fluid dynamics (CFD) may be employed to investigate the dynamical behaviour of airborne particles, and data-driven methods may be used to estimate and control the complex flow simulations. This thesis presents a methodology for machine-learning based control of particle concentrations in turbulent gas-solid flow. The aim is to reduce concentration levels at a 90 degree corner, through systematic manipulation of underlying two-phase flow dynamics, where an energy constrained inlet airflow rate is used as control variable. A CFD experiment of turbulent gas-solid flow in a two-dimensional corner geometry is simulated using the SST k-omega turbulence model for the gas phase, and drag force based discrete random walk for the solid phase. Validation of the two-phase methodology is performed against a backwards facing step experiment, with a 12.2% error correspondence in maximum negative particle velocity downstream the step. Based on simulation data from the CFD experiment, a linear auto-regressive with exogenous inputs (ARX) model and a non-linear ARX based neural network (NN) is used to identify the temporal relationship between inlet flow rate and corner particle concentration. The results suggest that NN is the preferred approach for output predictions of the two-phase system, with roughly four times higher simulation accuracy compared to ARX. The identified NN model is used in a model predictive control (MPC) framework with linearisation in each time step. It is found that the output concentration can be minimised together with the input energy consumption, by means of tracking specified target trajectories. Control signals from NN-MPC also show good performance in controlling the full CFD model, with improved particle removal capabilities, compared to randomly generated signals. In terms of maximal reduction of particle concentration, the NN-MPC scheme is however outperformed by a manually constructed sine signal. In conclusion, CFD based NN-MPC is a feasible methodology for efficient reduction of particle concentrations in a corner area; particularly, a novel application for removal of indoor bio-aerosols is presented. More generally, the results show that NN-MPC may be a promising approach to turbulent multi-phase flow control.

Page generated in 0.0599 seconds