• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 238
  • 121
  • 83
  • 45
  • 21
  • 12
  • 11
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 653
  • 330
  • 141
  • 113
  • 107
  • 101
  • 95
  • 79
  • 79
  • 76
  • 57
  • 57
  • 57
  • 57
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Lateral effects in a thermal boundary layer

Robbins, Robert Jaroslaw January 1969 (has links)
Analytical and numerical analyses along with experimental results are presented for laminar forced convection from a heated flat plate. The heating is of either the constant flux or constant temperature type with a discontinuity in the lateral as well as the free-stream direction. The principal objective was to examine the disturbance created by the lateral discontinuity in heating. Analytical solutions of the boundary layer type relating the wall temperature variation to a specific heat flux distribution were found. These involve Heaviside calculus, Fourier transform techniques and the Lévque velocity approximation, and although formally correct only as the Prandtl number approaches infinity, are found to be fairly accurate for Prandtl numbers as low as unity. Reduction of the energy equation to a two-dimensional elliptic equation by a double similarity transform enabled the calculation of numerical solutions valid in any free-stream cross-section removed from the leading edge. Results for technologically interesting cases of heated strips were found by superposition. The error in assuming such strips to be two-dimensional throughout their lateral extent is calculated. A velocity profile corresponding with the Blasius profile and a cross-sectional temperature field above a wind tunnel model of a heated flat plate were measured with a constant temperature anemometer and a rake of miniature thermocouples respectively. A temperature profile well into the heated portion is of two-dimensional form and the temperature field at the lateral step correlates with a numerical solution. In general, there is good agreement between all three approaches. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
52

Aspects of laminar free convection from a vertical plate

Gryzagoridis, Jasson January 1972 (has links)
The thesis is comprised of a number of aspects pertaining to the phenomenon of laminar free convection from a vertical plate. A survey of literature is presented which brings out the fact, that the phenomenon although it has been investigated to a large extent, still gives rise to widespread dispute and uncertainties which need careful examination. An analytical approach is presented showing that the hydrodynamic boundary layer is equal to the thermal boundary layer. In the past it was simply assumed to be so, in order to limit the computations, and the assumption was justified by the excellent agreement between calculations and experimental data. An analysis is presented showing the analogy existing between the Grashof and Reynolds numbers, as it is expected in the case of low velocities and considerable temperature differences, i.e. in free convection. An extensive experimental investigation pertaining to average heat transfer rates from a vertical plate at low Grashof numbers is presented and provides the necessary evidence in a much disputed region. It is shown conclusively that as far as average heat transfer rates are concerned, the agreement with the already accepted relationship can be extended to Grashof numbers as low as 10.
53

Analysis of unsteady laminar boundary layer flow by an integral method /

Miller, Roy W. January 1971 (has links)
No description available.
54

Computation and stability analysis of laminar flow over a blunt cone in hypersonic flow /

Esfahanian, Vahid January 1991 (has links)
No description available.
55

Analysis of unsteady laminar boundary layer flow by an integral method /

Miller, Roy W. January 1971 (has links)
No description available.
56

Aplicação da transformada integral e da transformação conforme na solução de uma classe de problemas difusivo-convectivos em domínios de geometrias não-convencionais

Alves, Thiago Antonini [UNESP] 18 August 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:39Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-08-18Bitstream added on 2014-06-13T18:48:07Z : No. of bitstreams: 1 alves_ta_me_ilha.pdf: 8112255 bytes, checksum: 408af7eb63e2a3050e7bda3fd133d8cf (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O presente trabalho trata da solução de uma classe de problemas difusivo-convectivos, tanto de natureza elíptica como parabólica, em domínios de geometrias não-convencionais, através da aplicação da Transformada Integral. Para facilitar o tratamento analítico e a aplicação das condições de contorno, antes da aplicação da Técnica da Transformada Integral Generalizada - TTIG sobre a equação governante do problema estudado, emprega-se uma Transformação Conforme - TC visando efetuar uma mudança de coordenadas adequada. Analisa-se inicialmente o problema hidrodinâmico do escoamento laminar completamente desenvolvido de fluidos Newtonianos no interior de dutos. Para a obtenção do campo de velocidades do escoamento aplica-se a TTIG sobre a equação da quantidade de movimento. Os parâmetros hidrodinâmicos de interesse, tais como: velocidades média e máxima, fator de atrito de Fanning, fator de Hagenbach, número de Poiseuille, comprimento de entrada hidrodinâmico e queda de pressão são calculados para as diversas geometrias. Feito isso, efetua-se o estudo dos problemas difusivo-convectivos relacionados à transferência de calor do escoamento laminar hidrodinamicamente desenvolvido e termicamente em desenvolvimento de fluidos Newtonianos com perfil de temperatura de entrada uniforme em dutos submetidos a condições de contorno de Dirichlet. Para a obtenção do campo de temperatura aplica-se a TTIG sobre a equação da energia e então, calculam-se os parâmetros térmicos de interesse: temperatura média de mistura, números de Nusselt local e médio e comprimento de entrada térmica. Realiza-se, quando possível, a comparação dos resultados obtidos para os parâmetros termos-hidráulicos com os disponíveis na literatura. / The present work describes the solution of a class of elliptical-parabolic diffusiveconvective problems, on unconventional geometries, employing the Generalized Integral Transform Technique (GITT). In order to facilitate the analytical treatment and the application of the boundary conditions, a Conformal Transform (CT) is used to change the domain into a more suitable coordinate system, just before GITT is to be applied. First of all, using this procedure, the hydrodynamic problem of fully developed Newtonian laminar flow inside ducts is analyzed. In order to obtain the velocity field, GITT is applied on the momentum equation. Interesting hydrodynamic parameters, such as: maximum and minimum velocity values, Fanning friction and Hagenbach factors, Poiseuille number, hydrodynamic entry length, as well as pressure loss, are evaluated for several geometries. Following that, diffusive-convective problems are studied in relationship to the heat transfer in hydrodynamically fully developed and thermally non-developed Newtonian laminar flow inside ducts under Dirichlet boundary conditions, considering uniform temperature entrance profile. In order to obtain the temperature field, GITT is applied on the energy equation, evaluating the relevant parameters: bulk mean temperature, average and local Nusselt numbers and thermal entry length. The results are compared, as much as possible, with the parameter values available in the literature.
57

Direct computations of a synthetic jet actuator

Hayes-McCoy, Declan January 2012 (has links)
Synthetic jet actuators have previously been defined as having potential use in both internal and external aerodynamic applications. The formation of a jet flow perpendicular to the surface of an aerofoil or in a duct of diffuser has a range of potential flow control benefits. These benefits can include both laminar to turbulent transition control, which is associated with a drag reduction in aerodynamic applications. The formation and development of zero-net-mass-flux synthetic jets are investigated using highly accurate numerical methods associated with the methodology of Direct Numerical Simulation (DNS). Jet formation is characterised by an oscillating streamwise jet centreline velocity, showing net momentum flux away from the jet orifice. This momentum flux away from the orifice takes the form of a series of vortex structures, often referred to as a vortex train. Numerical simulations of the synthetic jet actuator consist of a modified oscillating velocity profile applied to a wall boundary. The Reynolds numbers used vary from 85 ≤ Re ≤ 300. A complete numerical study of both axisymmetric and fully three-dimensional jet flow is performed. A parametric axisymmetric simulation is carried out in order to study the formation criterion and evolution of zero-net-mass-flux synthetic jets under variations in actuator input parameters. From the results of these simulations the conditions necessary for the formation of the synthetic jet along with the input parameters that provide an optimal jet output are deduced. Jet optimisation is defined by the mass flow, vortex strength and longevity of the vortex train as it travels downstream. Further investigations are carried out on a fully three-dimensional DNS version of the optimised axisymmetric case. Comparisons between the jet evolution and flow-field structures present in both the axisymmetric and three-dimensional configurations are made. This thesis examines the vortex structures, the jet centreline velocities along with time dependent and time averaged results in order to deduce and visualise the effects of the input parameters on the jet formation and performance. The results attained on altering the oscillation frequency of the jet actuator indicated that synthetic jets with zero mean velocity at the inflow behave significantly differently from jets with non-zero mean velocity at the inflow. A study into the evolution and formation of the train of vortex structures associated with the formation of a synthetic jet is performed. This study is accompanied with a series of time averaged results showing time dependent flow-field trends. The time history of the jet centreline velocity, showing the net momentum flux of the fluid away from the orifice of a fully developed synthetic jet, is analysed for both axisymmetric and three-dimensional cases. Differences in the fluid dynamics between the idealised axisymmetric configuration and the three-dimensional case have been identified, where three-dimensional effects are found to be important in the region near the jet nozzle exit. The effect of a disturbance introduced into the three-dimensional simulation in order to break its inherent symmetr around the jet centreline is examined by altering the input frequency of the disturbance. It was found that the effect of this relatively minor disturbance had a major effect on the jet flow field in the region adjacent to the orifice. The effect of which was deemed to be caused by discontinuities in the surface of the jet orifice due to manufacturing tolerances. Although the effects of these disturbances on the jet flow-field are large, they seem to have been neglected from numerical simulations to date. The effect of a synthetic jet on an imposed cross-streamwise velocity profile was examined. It was found that the synthetic jet flow-field resulted in a deformation of the velocity profile in the region downstream of the synthetic jet. It is suggested that this region of deformed flow could interact with coherent structures in a transitional boundary layer in order to delay flow transition to turbulence. The effect of varying the Strouhal number of a synthetic jet in a cross-flow is also analysed. It is clear from the results presented that, in the presence of a cross-flow velocity the Strouhal number effect on the synthetic jet flow field evolution, while dominant in a quiescent fluid is surpassed by the effect of the cross-flow.
58

Determinación de la velocidad de llama laminar en un quemador de premezcla

Bisso Carrasco, José Luis 31 October 2015 (has links)
En el presente trabajo se calculó la velocidad de llama laminar del gas licuado de petróleo (GLP) con una concentración de 70% de propano y 30% de Butano en un quemador de llamas de premezcla tipo Powling y se comparó los resultados obtenidos con los determinados por el método de cálculo aprendido en pregrado y también empleando el software NASA Lewis 89. La metodología consistió en realizar ensayos en el módulo del quemador de llamas de premezclas, variando la cantidad de aire y combustible que ingresa al sistema. Es de esta forma que se consiguió una serie de datos de fracción estequiométrica (Φ) versus velocidad de llama laminar (SL). Luego en la siguiente parte del estudio se realizó el cálculo de la velocidad de llama laminar de forma analítica, empleando las ecuaciones químicas de balance de especies y de energía para poder calcular la temperatura de llama adiabática y con ella poder realizar el cálculo de la velocidad de llama. Por otra parte también se empleo el software NASA Lewis 89, dicho software contiene un análisis más sensible acerca de la combustión al calcular las composiciones de equilibrio de mezclas compuestas y sus propiedades. Este programa es usado para obtener un mejor resultado con respecto a la temperatura de llama adiabática y así poder obtener valores de velocidad de llama laminar más cercanos a la realidad. Finalmente se construyen las tablas y gráficos comparativos para la elaboración de las conclusiones y la evaluación de los resultados obtenidos en la parte experimental contra los determinados en la parte analítica por medio del software empleado. Por último se obtuvieron resultados experimentales de velocidad de llama laminar en el rango de 12,35 cm/s hasta 17,16 cm/s; correspondientes a una fracción estequiométrica de 0,58 a 0,68 respectivamente. / Tesis
59

Prediction of Soot Formation in Laminar Opposed Diffusion Flame with Detailed and Reduced Reaction Mechanisms

Chang, Hojoon 01 December 2004 (has links)
The present work focuses on a computational study of a simplified soot model to predict soot production and destruction in methane/oxidizer (O2 and N2) and ethylene/air flames using a one-dimensional laminar opposed diffusion flame setup. Two different detailed reaction mechanisms (361 reactions and 61 species for methane/oxidizer flame and 527 reactions and 99 species for ethylene/air flame) are used to validate the simplified soot model in each flame. The effects of strain rate and oxygen content on the soot production and destruction are studied, and the soot related properties such as soot volume fraction, particle number density and particle diameter are compared with published results. The results show reasonable agreement with data and that the soot volume fraction decreases with higher strain rate and lower oxygen content. The simplified soot model has also been used with two reduced reaction mechanisms (12-step, 16-species for methane flame and 20-species for ethylene flame) since such reduced mechanisms are computationally more efficient for practical application. The profiles of the physical properties and the major species are in excellent agreement with the results using the detailed reaction mechanisms. However, minor hydrocarbon-species such as acetylene (C2H2) that is the primary pyrolysis species in the simplified soot model is significantly over predicted and this, in turn, results in an over-prediction of soot production. Finally, the reduced reaction mechanism is modified to get more accurate prediction of the minor hydrocarbon-species. The modified reduced reaction mechanism shows that the soot prediction can be improved by improving the predictions of the key minor species.
60

An empirical study of a pin fin heat exchanger in laminar and turbulent flow /

Summers, Jeffrey W. January 2003 (has links) (PDF)
Thesis (M.S. in Mechanical Engineering)--Naval Postgraduate School, December 2003. / Thesis advisor(s): Ashok Gopinath. Includes bibliographical references (p. 101-102). Also available online.

Page generated in 0.0404 seconds