• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 5
  • Tagged with
  • 24
  • 24
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vibration, buckling and postbuckling of laminated composites with delaminations /

Lee, Jaehong, January 1992 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1992. / Vita. Abstract. Includes bibliographical references (leaves 193-202). Also available via the Internet.
2

Ultrasonic ply-by-ply detection of matrix cracks in laminated composites

Ganpatye, Atul Shridatta 17 February 2005 (has links)
In the design of cryogenic fuel tanks for the next generation Reusable Launch Vehicles (RLVs), the permeability of liquid hydrogen (LH2) across the thickness of the tank is a critical issue. The rate of permeation of LH2 is largely dependent on the internal damage state of the composite tank wall. Damage in the form of matrix cracks in the composite material of the tank is responsible for the through-the-thickness permeation of LH2. In this context, the detection of matrix cracks takes on an unprecedented significance. In this work, an ultrasonic technique for the ply-by-ply detection of matrix cracks in laminated composites is developed. Experimental results are presented for graphite/epoxy laminates with different lay-ups and laminate thicknesses. Matrix cracks in each of the plies of the laminated composites were detected even when there was a rather high density of cracks in all of the plies. The ultrasonic data were calibrated by comparing them with the corresponding results obtained by using the traditional methods of optical microscopy and penetrant enhanced X-radiography. Excellent quantitative correlation was observed between the results obtained with ultrasonics and the traditional methods.
3

Ultrasonic ply-by-ply detection of matrix cracks in laminated composites

Ganpatye, Atul Shridatta 17 February 2005 (has links)
In the design of cryogenic fuel tanks for the next generation Reusable Launch Vehicles (RLVs), the permeability of liquid hydrogen (LH2) across the thickness of the tank is a critical issue. The rate of permeation of LH2 is largely dependent on the internal damage state of the composite tank wall. Damage in the form of matrix cracks in the composite material of the tank is responsible for the through-the-thickness permeation of LH2. In this context, the detection of matrix cracks takes on an unprecedented significance. In this work, an ultrasonic technique for the ply-by-ply detection of matrix cracks in laminated composites is developed. Experimental results are presented for graphite/epoxy laminates with different lay-ups and laminate thicknesses. Matrix cracks in each of the plies of the laminated composites were detected even when there was a rather high density of cracks in all of the plies. The ultrasonic data were calibrated by comparing them with the corresponding results obtained by using the traditional methods of optical microscopy and penetrant enhanced X-radiography. Excellent quantitative correlation was observed between the results obtained with ultrasonics and the traditional methods.
4

Numerical Modeling and Analysis of Composite Beam Structures Subjected to Torsional Loading

Hsieh, Kunlin 16 May 2007 (has links)
Torsion of cylindrical shafts has long been a basic subject in the classical theory of elasticity. In 1998 Swanson proposed a theoretical solution for the torsion problem of laminated composites. He adopted the traditional formulation of the torsion problem based on Saint Venant's torsion theory. The eigenfunction expansion method was employed to solve the formulated problem. The analytical method is proposed in this study enabling one to solve the torsion problem of laminated composite beams. Instead of following the classical Saint Venant theory formulation, the notion of effective elastic constant is utilized. This approach uses the concept of elastic constants, and in this context the three-dimensional non-homogeneous orthotropic laminate is replaced by an equivalent homogeneous orthotropic material. By adopting the assumptions of constant stress and constant strain, the effective shear moduli of the composite laminates are then derived. Upon obtaining the shear moduli of the equivalent homogeneous material, the effective torsional rigidity of the laminated composite rods can be determined by employing the theory developed by Lekhnitskii in 1963. Finally, the predicted results based on the present analytical approach are compared with those by the finite element, the finite difference method and Swanson's results. / Master of Science
5

Towards a Semantic Knowledge Management Framework for Laminated Composites

Premkumar, Vivek 23 November 2015 (has links)
The engineering of laminated composite structures is a complex task for design engineers and manufacturers, requiring significant management of manufacturing process and materials information. Ontologies are becoming increasingly commonplace for semantically representing knowledge in a formal manner that facilitates sharing of rich information between people and applications. Moreover, ontologies can support first-order logic and reasoning by rule engines that enhance automation. To support the engineering of laminated composite structures, this work developed a novel Semantic LAminated Composites Knowledge management System (SLACKS) that is based on a suite of ontologies for laminated composites materials and design for manufacturing (DFM) and their integration into a previously developed engineering design framework. By leveraging information from CAD/FEA tools and materials data from online public databases, SLACKS uniquely enables software tools and people to interoperate, to improve communication and automate reasoning during the design process. With SLACKS, this research shows the power of integrating relevant domains of the product lifecycle, such as design, analysis, manufacturing and materials selection through the engineering case study of a wind turbine blade. The integration reveals a usable product lifecycle knowledge tool that can facilitate efficient knowledge creation, retrieval and reuse, from design inception to manufacturing of the product.
6

Local buckling and crippling of composite stiffener sections

Bonanni, David L. January 1988 (has links)
The local buckling, postbuckling, and crippling (failure) of channel, zee, and I- and J-section stiffeners made of AS4/3502 graphite-epoxy unidirectional tape are studied by experiment and analysis. Thirty-six specimens were loaded in axial compression as intermediate length columns. Examination of the experimental results indicates the existence of a number of damage initiation modes, all of which involve either delamination in some part of the specimen or local material strength failure in a comer of the specimen. The ratio of the flange width to thickness has a strong influence on the buckling stress and damage initiation mode. The inner corner radius strongly affects the buckling and crippling stresses for the I- and J-section specimens. Comparison of the numerical results from a computer code for shell analysis (STAGS) with experimental data shows good correlation prior to buckling and at the buckling load, but diminished agreement in the postbuckling region. This lack of postbuckling correlation is attributed to the neglecting of transverse shearing deformations in the structural theory, inaccuracies in the modeling of in-plane boundary conditions, and damage initiation in the experimental specimens. A plane stress failure analysis for five of the specimens shows the compressive fiber mode criterion of Hashin correlates reasonably well with the first detectable damage event. Equilibrium is used to develop interlaminar stress equations for classical laminated plate theory that require high order derivatives of the displacements. Derivatives computed from discrete displacement data using the Discrete Fourier Transform are inaccurate due to the Gibbs phenomenon. / Master of Science
7

Vibration, buckling and postbuckling of laminated composites with delaminations

Lee, Jaehong 06 June 2008 (has links)
Free vibration, buckling and postbuckling analyses of laminated composite plates with multiple delaminations are presented. A fInite element method based on a layer-wise laminated composite plate theory is developed to formulate the problem. Geometric nonlinearity in the sense of von Karman and the imperfection in the plate in the form of initial global deflection and initial delamination openings are included. A simple contact algorithm which precludes the physically inadmissible overlapping between delaminated surfaces is proposed and incorporated in the analysis. A sublaminate concept is adopted in the analysis to reduce the computational efforts, and found to be efficient. Numerical results are obtained for through-the-width, circular and rectangular delaminations addressing the effects of the number of delaminations, their lengths and through-the-thickness and axial locations on the critical buckling load and buckling mode shapes as well as free vibration frequency and modes. Postbuckling responses are investigated with respect to different magnitudes and directions of initial imperfections. The effects of material anisotropy and contact condition between delaminated surfaces are also considered. It is found that the proposed approach is very efficient and powerful for solving the above mentioned problems. / Ph. D.
8

Efficient Adjacency Queries and Dynamic Refinement for Meshfree Methods with Applications to Explicit Fracture Modeling

Olliff, James 22 June 2018 (has links)
Meshfree methods provide a more practical approach to solving problems involving large deformation and modeling fracture compared to the Finite Element Method (FEM). However meshfree methods are more computationally intensive compared to FEM, which can limit their practicality in engineering. Meshfree methods also lack a clear boundary definition, restricting available visualization techniques. Determining particle locations and attributes such that a consistent approximation is ensured can be challenging in meshfree methods, especially when employing h-refinement. The primary objective of this work is to address the limitations associated with computational efficiency, meshfree domain discretization, and h-refinement, including both placement of particles as well as determination of particle attributes. To demonstrate the efficacy of these algorithms, a model predicting the failure of laminated composite structures using a meshfree method will be presented.
9

Fabrication and Characterization on High Performance Mg/Carbon-Fiber/PEEK Laminates and Nanoparticle/PEEK Nanocomposites

Kuo, Mu-Cheng 25 January 2005 (has links)
Magnesium alloys have attracted considerable attention owing to its low density of ~1.7 g/cm3. On the other hand, the carbon fiber (CF) reinforced polyether ether ketone (PEEK) polymer composites possess extraordinary specific strength and stiffness along the longitudinal (or fiber) direction. It follows that the combination of Mg/CF/PEEK would offer an alternative in forming a high specific strength and stiffness composite. In the first part of this study, the low density and high performance Mg-based laminated composites were fabricated by means of sandwiching the AZ31 Mg foils with the carbon-fiber/PEEK prepreg through hot pressing. Proper surface treatments of AZ31 sheet using CrO3 base etchants are necessary in order to achieve good interface bonding characteristics. The resulting Mg base laminated composite, with a low density of 1.7 g/cm3, exhibits high modulus of 75 GPa and tensile strength of 932 MPa along the longitudinal direction. The experimentally measured tensile modulus and strength data along both the longitudinal and transverse direction are within 90-100% of the theoretical predictions by rule of mixtures, suggesting that the bonding between layers and the load transfer efficiency are satisfactory. The flexural stress and modulus along the longitudinal direction are 960 MPa and 54.6 GPa, respectively, suggesting a sufficiently high resistance against bending deflection. The peel strengths are about 2.75 and 4.85 N/mm along the longitudinal and transverse directions, respectively, superior to that of the epoxy-resin-adhered and carbon-fiber-reinforced aluminum laminated composites. Polymer nanocomposites have attracted considerable attention during the past decade due to their versatile and extra-ordinary performances. The polymer nanocomposites can be prepared by the well-known sol-gel method. It is well known that PEEK is a good solvent resistant polymer. Hence, it is impossible to fabricate the PEEK nanocomposite by means of sol-gel method. In the second part of this study, the PEEK nanocomposites filled with nano-sized silica or alumina measuring 15-30 nm to 2.5-10 weight percent were fabricated by vacuum hot press molding at 400oC. The resulting nanocomposites with 5-7.5 wt% SiO2 or Al2O3 nanoparticles exhibit the optimum improvement of hardness, elastic modulus, and tensile strength by 20-50%, with the sacrifice of tensile ductility. With no surface modification for the inorganic nanoparticles, the spatial distribution of the nanopartilces appears to be reasonably uniform. There seems no apparent chemical reaction or new phase formation between the nanoparticle and matrix interface. The crystallinity degree and thermal stability of the PEEK resin with the addition of nanopartilces were examined by X-ray diffraction, differential scanning calorimetry, and thermogravity analyzer, and it is found that a slight decrease in crystallinity fraction and a higher degradation temperature would result in as compared with the prestine PEEK.
10

Analysis Of Delaminations In Tapered And Stiffened Laminated Composite Plates

Vijayaraju, K 07 1900 (has links) (PDF)
No description available.

Page generated in 0.1174 seconds