• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Landsat derived land surface phenology metrics for the characterization of natural vegetation in the Brazilian savanna

Schwieder, Marcel 30 August 2018 (has links)
Die Brasilianische Savanne, auch bekannt als der Cerrado, bedeckt ca. 24% der Landoberfläche Brasiliens. Der Cerrado ist von einer einzigartigen Biodiversität und einem starken Gradienten in der Vegetationsstruktur gekennzeichnet. Großflächige Landnutzungsveränderungen haben dazu geführt, dass annähernd die Hälfte der Cerrado in bewirtschaftetes Land umgewandelt wurde. Die Kartierung ökologischer Prozesse ist nützlich, um naturschutzpolitische Entscheidungen auf räumlich explizite Informationen zu stützen, sowie um das Verständnis der Ökosystemdynamik zu verbessern. Neue Erdbeobachtungssensoren, frei verfügbare Daten, sowie Fortschritte in der Datenverarbeitung ermöglichen erstmalig die großflächige Erfassung saisonaler Vegetationsdynamiken mit hohem räumlichen Detail. In dieser Arbeit wird der Mehrwert von Landsat-basierten Landoberflächenphänologischen (LSP) Metriken, für die Charakterisierung der Cerrado-Vegetation, hinsichtlich ihrer strukturellen und phänologischen Diversität, sowie zur Schätzung des oberirdischen Kohlenstoffgehaltes (AGC), analysiert. Die Ergebnisse zeigen, dass LSP-Metriken die saisonale Vegetatiosdynamik erfassen und für die Kartierung von Vegetationsphysiognomien nützlich sind, wobei hier die Grenzen der Einteilung von Vegetationsgradienten in diskrete Klassen erreicht wurden. Basierend auf Ähnlichkeiten in LSP wurden LSP Archetypen definiert, welche die Erfassung und Darstellung der phänologischen Diversität im gesamten Cerrado ermöglichten und somit zur Optimierung aktueller Kartierungskonzepte beitragen können. LSP-Metriken ermöglichten die räumlich explizite Quantifizierung von AGC in drei Untersuchungsgebieten und sollten bei zukünftigen Kohlenstoffschätzungen berücksichtigt werden. Die Erkenntnisse dieser Dissertation zeigen die Vorteile und Nutzungsmöglichkeiten von LSP Metriken im Bereich der Ökosystemüberwachung und haben demnach direkte Implikationen für die Entwicklung und Bewertung nachhaltiger Landnutzungsstrategien. / The Brazilian savanna, known as the Cerrado, covers around 24% of Brazil. It is characterized by a unique biodiversity and a strong gradient in vegetation structure. Land-use changes have led to almost half of the Cerrado being converted into cultivated land. The mapping of ecological processes is, therefore, an important prerequisite for supporting nature conservation policies based on spatially explicit information and for deepening our understanding of ecosystem dynamics. New sensors, freely available data, and advances in data processing allow the analysis of large data sets and thus for the first time to capture seasonal vegetation dynamics over large extents with a high spatial detail. This thesis aimed to analyze the benefits of Landsat based land surface phenological (LSP) metrics, for the characterization of Cerrado vegetation, regarding its structural and phenological diversity, and to assess their relation to above ground carbon. The results revealed that LSP metrics enable to capture the seasonal dynamics of photosynthetically active vegetation and are beneficial for the mapping of vegetation physiognomies. However, the results also revealed limitations of hard classification approaches for mapping vegetation gradients in complex ecosystems. Based on similarities in LSP metrics, which were for the first time derived for the whole extent of the Cerrado, LSP archetypes were proposed, which revealed the spatial patterns of LSP diversity at a 30 m spatial resolution and offer potential to enhance current mapping concepts. Further, LSP metrics facilitated the spatially explicit quantification of AGC in three study areas in the central Cerrado and should thus be considered as a valuable variable for future carbon estimations. Overall, the insights highlight that Landsat based LSP metrics are beneficial for ecosystem monitoring approaches, which are crucial to design sustainable land management strategies that maintain key ecosystem functions and services.
12

Automatic Detection of Low Passability Terrain Features in the Scandinavian Mountains

Ahnlén, Fredrik January 2019 (has links)
During recent years, much focus have been put on replacing time consuming manual mappingand classification tasks with automatic methods, having minimal human interaction. Now it ispossible to quickly classify land cover and terrain features covering large areas to a digital formatand with a high accuracy. This can be achieved using nothing but remote sensing techniques,which provide a far more sustainable process and product. Still, some terrain features do not havean established methodology for high quality automatic mapping.The Scandinavian Mountains contain several terrain features with low passability, such asmires, shrub and stony ground. It would be of interest to anyone passing the land to avoid theseareas. However, they are not sufficiently mapped in current map products.The aim of this thesis was to find a methodology to classify and map these terrain featuresin the Scandinavian Mountains with high accuracy and minimal human interaction, using remotesensing techniques. The study area chosen for the analysis is a large valley and mountain sidesouth-east of the small town Abisko in northern Sweden, which contain clearly visible samplesof the targeted terrain features. The methodology was based on training a Fuzzy Logic classifierusing labeled training samples and descriptors derived from ortophotos, LiDAR data and currentmap products, chosen to separate the classes from each other by their characteristics. Firstly,a set of candidate descriptors were chosen, from which the final descriptors were obtained byimplementing a Fisher score filter. Secondly a Fuzzy Inference System was constructed usinglabeled training data from the descriptors, created by the user. Finally the entire study area wasclassified pixel-by-pixel by using the trained classifier and a majority filter was used to cluster theoutputs. The result was validated by visual inspection, comparison to the current map productsand by constructing Confusion Matrices, both for the training data and validation samples as wellas for the clustered- and non-clustered results.The results showed that / De senaste åren har mycket fokus lagts på att ersätta tidskrävande manuella karterings- och klassificeringsmetodermed automatiserade lösningar med minimal mänsklig inverkan. Det är numeramöjligt att digitalt klassificera marktäcket och terrängföremål över stora områden, snabbt och medhög noggrannhet. Detta med hjälp av enbart fjärranalys, vilket medför en betydligt mer hållbarprocess och slutprodukt. Trots det finns det fortfarande terrängföremål som inte har en etableradmetod för noggrann automatisk kartering.Den skandinaviska fjällkedjan består till stor del av svårpasserade terrängföremål som sankmarker,videsnår och stenig mark. Alla som tar sig fram i terrängen obanat skulle ha nytta av attkunna undvika dessa områden men de är i nuläget inte karterade med önskvärd noggrannhet.Målet med denna analys var att utforma en metod för att klassificera och kartera dessa terrängföremåli Skanderna, med hög noggrannhet och minimal mänsklig inverkan med hjälp avfjärranalys. Valet av testområde för analysen är en större dal och bergssida sydost om Abisko inorra Sverige som innehåller tydliga exemplar av alla berörda terrängföremål. Metoden baseradespå att träna en Fuzzy Logic classifier med manuellt utvald träningsdata och deskriptorer,valda för att bäst separera klasserna utifrån deras karaktärsdrag. Inledningsvis valdes en uppsättningav kandidatdeskriptorer som sedan filtrerades till den slutgiltiga uppsättningen med hjälp avett Fisher score filter. Ett Fuzzy Inference System byggdes och tränades med träningsdata fråndeskriptorerna vilket slutligen användes för att klassificera hela testområdet pixelvis. Det klassificeraderesultatet klustrades därefter med hjälp av ett majoritetsfilter. Resultatet validerades genomvisuell inspektion, jämförelse med befintliga kartprodukter och genom confusion matriser, vilkaberäknades både för träningsdata och valideringsdata samt för det klustrade och icke-klustraderesultatet.Resultatet visade att de svårpasserade terrängföremålen sankmark, videsnår och stenig markkan karteras med hög noggrannhet med hjälp denna metod och att resultaten generellt är tydligtbättre än nuvarande kartprodukter. Däremot kan metoden finjusteras på flera plan för att optimeras.Bland annat genom att implementera deskriptorer för markvattenrörelser och användandeav LiDAR med högre spatial upplösning, samt med ett mer fulltäckande och spritt val av klasser.
13

A Multiscale Spatial Analysis of Oak Openings Plant Diversity with Implications for Conservation and Management

Schetter, Timothy Andrew 11 April 2012 (has links)
No description available.
14

Nature Inspired Optimization Techniques For Flood Assesment And Land Cover Mapping Using Satellite Images

Senthilnath, J 05 1900 (has links) (PDF)
With the advancement of technology and the development of more sophisticated remote sensing sensor systems, the use of satellite imagery has opened up various fields of exploration and application. There has been an increased interest in analysis of multi-temporal satellite image in the past few years because of the wide variety of possible applications of in both short-term and long-term image analysis. The type of changes that might be of interest can range from short-term phenomena such as flood assessment and crop growth stage, to long-term phenomena such as urban fringe development. This thesis studies flood assessment and land cover mapping of satellite images, and proposes nature inspired algorithms that can be easily implemented in realistic scenarios. Disaster monitoring using space technology is one of the key areas of research with vast potential; particularly flood based disasters are more challenging. Every year floods occur in many regions of the world and cause great losses. In order to monitor and assess such situations, decision-makers need accurate near real-time knowledge of the field situation. How to provide actual information to decision-makers for effective flood monitoring and mitigation is an important task, from the point of view of public welfare. Over-estimation of the flooded area leads to over-compensation to people, while under-estimation results in production loss and negative impacts on the population. Hence it is essential to assess the flood damage accurately, both in qualitative and quantitative terms. In such situations, land cover maps play a very critical role. Updating land cover maps is a time consuming and costlier operation when it is performed using traditional or manual methods. Hence, there is a need to find solutions for such problem through automation. Design of automatic systems dedicated to satellite image processing which involves change detection to discriminate areas of land cover change between imaging dates. The system integrates the spectral and spatial information with the techniques of image registration and pattern classification using nature inspired techniques. In the literature, various works have been carried out for solving the problem of image registration and pattern classification using conventional methods. Many researchers have proved, for different situations, that nature inspired techniques are promising in comparison with that of conventional methods. The main advantage of nature inspired technique over any other conventional methods is its stochastic nature, which converges to optimal solution for any dynamic variation in a given satellite image. Results are given in such terms as to delineate change in multi-date imagery using change-versus-no-change information to guide multi-date data analysis. The main objective of this study is to analyze spatio-temporal satellite data to bring out significant changes in the land cover map through automated image processing methods. In this study, for satellite image analysis of flood assessment and land cover mapping, the study areas and images considered are: Multi-temporal MODerate-resolution Imaging Spectroradiometer (MODIS) image around Krishna river basin in Andhra Pradesh India; Linear Imaging Self Scanning Sensor III (LISS III)and Synthetic Aperture Radar(SAR)image around Kosi river basin in Bihar, India; Landsat7thematicmapperimage from the southern part of India; Quick-Bird image of the central Bangalore, India; Hyperion image around Meerut city, Uttar Pradesh, India; and Indian pines hyperspectral image. In order to develop a flood assessment framework for this study, a database was created from remotely sensed images (optical and/or Synthetic Aperture Radar data), covering a period of time. The nature inspired techniques are used to find solutions to problems of image registration and pattern classification of a multi-sensor and multi-temporal satellite image. Results obtained are used to localize and estimate accurately the flood extent and also to identify the type of the inundated area based on land cover mapping. The nature inspired techniques used for satellite image processing are Artificial Neural Network (ANN), Genetic Algorithm (GA),Particle Swarm Optimization (PSO), Firefly Algorithm(FA),Glowworm Swarm Optimization(GSO)and Artificial Immune System (AIS). From the obtained results, we evaluate the performance of the methods used for image registration and pattern classification to compare the accuracy of satellite image processing using nature inspired techniques. In summary, the main contributions of this thesis include (a) analysis of flood assessment and land cover mapping using satellite images and (b) efficient image registration and pattern classification using nature inspired algorithms, which are more popular than conventional optimization methods because of their simplicity, parallelism and convergence of the population towards the optimal solution in a given search space.

Page generated in 0.0888 seconds