• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A comparison of data-driven and model-driven approaches to brightness temperature diurnal cycle interpolation

Van den Bergh, F, Van Wyk, MA, Van Wyk, BJ, Udahemuka, G 09 1900 (has links)
This paper presents two new schemes for interpolating missing samples in satellite diurnal temperature cycles (DTCs). The first scheme, referred to here as the cosine model, is an improvement of the model proposed in [2] and combines a cosine and exponential function for modelling the DTC. The second scheme uses the notion of a Reproducing Kernel Hilbert Space (RKHS) interpolator [1] for interpolating the missing samples. The application of RKHS interpolators to the DTC interpolation problem is novel. Results obtained by means of computer experiments are presented.
2

Surface-atmosphere interactions in the thermal infrared (8 - 14um)

McAtee, Brendon Kynnie January 2003 (has links)
Remote sensing of land surface temperature (LST) is a complex task. From a satellite-based perspective the radiative properties of the land surface and the atmosphere are inextricably linked. Knowledge of both is required if one is to accurately measure the temperature of the land surface from a space-borne platform. In practice, most satellite-based sensors designed to measure LST over the surface of the Earth are polar orbiting. They scan swaths of the order of 2000 km, utilizing zenith angles of observation of up to 60°. As such, satellite viewing geometry is important when comparing estimates of LST between different overpasses of the same point on the Earth's surface. In the case of the atmosphere, the optical path length through which the surfaceleaving radiance propagates increases with increasing zenith angle of observation. A longer optical path may in turn alter the relative contributions which molecular absorption and emission processes make to the radiance measured at the satellite sensor. A means of estimating the magnitudes of these radiative components in relation to the viewing geometry of the satellite needs to be developed if their impacts on the at-sensor radiance are to be accurately accounted for. The problem of accurately describing radiative transfer between the surface and the satellite sensor is further complicated by the fact that the surface-leaving radiance itself may also vary with sensor viewing geometry. Physical properties of the surface such as emissivity are known to vary as the zenith angle of observation changes. The proportions of sunlit and shaded areas with the field-of-view of the sensor may also change with viewing geometry depending on the type of cover (eg vegetation), further impacting the surface emissivity. / Investigation of the change in surface-leaving radiance as the zenith angle of observation varies is then also important in developing a better understanding of the radiative interaction between the land surface and the atmosphere. The work in this study investigates the atmospheric impacts using surface brightness temperature measurements from the ATSR-2 satellite sensor in combination with atmospheric profile data from radiosondes and estimates of the downwelling sky radiance made by a ground-based radiometer. A line-by-line radiative transfer model is used to model the angular impacts of the atmosphere upon the surfaceleaving radiance. Results from the modelling work show that if the magnitude of the upwelling and downwelling sky radiance and atmospheric transmittance are accurately known then the surface-emitted radiance and hence the LST may be retrieved with negligible error. Guided by the outcomes of the modelling work an atmospheric correction term is derived which accounts for absorption and emission by the atmosphere, and is based on the viewing geometry of the satellite sensor and atmospheric properties characteristic of a semi-arid field site near Alice Springs in the Northern Territory (Central Australia). Ground-based angular measurements of surface brightness temperature made by a scanning, self calibrating radiometer situated at this field site are then used to investigate how the surface-leaving radiance varies over a range of zenith angles comparable to that of the ATSR-2 satellite sensor. / Well defined cycles in the angular dependence of surface brightness temperature were observed on both diumal and seasonal timescales in these data. The observed cycles in surface brightness temperature are explained in terms of the interaction between the downwelling sky radiance and the angular dependence of the surface emissivity. The angular surface brightness temperature and surface emissivity information is then applied to derive an LST estimate of high accuracy (approx. 1 K at night and 1-2 K during the day), suitable for the validation of satellite-derived LST measurements. Finally, the atmospheric and land surface components of this work are combined to describe surface-atmosphere interaction at the field site. Algorithms are derived for the satellite retrieval of LST for the nadir and forward viewing geometries of the ATSR-2 sensor, based upon the cycles in the angular dependence of surface brightness temperature observed in situ and the atmospheric correction term developed from the modelling of radiative transfer in the atmosphere. A qualitative assessment of the performance of these algorithms indicates they may obtain comparable accuracy to existing dual angle algorithms (approx. 1.5 K) in the ideal case and an accuracy of 3-4 K in practice, which is limited by knowledge of atmospheric properties (eg downwelling sky radiance and atmospheric transmittance), and the surface emissivity. There are, however, strong prospects of enhanced performance given better estimates of these physical quantities, and if coefficients within the retrieval algorithms are determined over a wider range of observation zenith angles in the future.
3

A relação entre a temperatura radiométrica de superfície (Land Surface Temperature-LST), índice de vegetação (Normalizes Diference Vegetation Index-NDVI) e os diferentes padrões de uso da terra do município de São Paulo / The relationship between surface radiometric temperature (Land Surface Temperature-LST), vegetation index (Normalized Vegetation Index diference-NDVI) and the different land use patterns in São Paulo-SP.

Jesus, Bruna Luiza Pereira de 15 September 2015 (has links)
Esse trabalho tem como objetivo compreender as relações entre a Land Surface Temperature (LST), Normalized Difference Vegetation Índex (NDVI) e os padrões do uso da terra do município de São Paulo no período de 1985 a 2010. Analisou-se 15 bairros, nos quais foram extraídas 45 amostras aleatórias de diferentes padrões de uso da terra; subdivididas em baixo padrão, médio padrão e médio alto padrão. Com o aporte de geotecnologia, foi feita a extração dos dados das imagens de satélite Landsat 5 (TM) e das Ortofotos do ano de 2010. O comportamento das amostras variou de acordo como os diferentes perfis dos grupos analisados. O grupo de baixo padrão foi o que apresentou as maiores amplitudes térmicas, ausência de arborização urbana atreladas a um baixo padrão construtivo. O grupo de médio padrão é caracterizado pela predominância de área verticalizada e apresenta uma arborização urbana escassa em meio a uma malha urbana consolidada. O grupo de médio alto padrão foi o que mais apresentou arborização urbana, distribuída de forma homogênea na maioria das amostras, portanto foi o grupo que teve baixas amplitudes térmicas e o índice de Normalized Difference Vegetation Index (NDVI) com pouca variação. Os testes mostraram fortes correlações negativas entre as amostras de Land Surface Temperature (LST) e o índice de Normalized Difference Vegetation Index (NDVI), sendo -0,58 em 1985, -0,43 em 2004 e -0,82 em 2010. Os diferentes padrões de uso da terra, relacionados à temperatura de superfície, e o índice de vegetação, aliado à preocupação com o planejamento ambiental, deve resultar na melhoria da qualidade de vida da população. Esta pesquisa faz parte do Projeto Temático processo FAPESP 08/58161 -1, \"Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options\", Component 5: Vulnerability of the metropolitan region of São Paulo to climate Change. / This study aims to understand the relationship between Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) and the patterns of land use in the municipality of São Paulo, from 1985 to 2010. A totoal of 45 random samples were extracted from the 15 districts used in this study, with different patterns of land use which were subdivided into three different clases: low-end, middle and middle-high. Geospatial approaches allowed the extraction of satellite image data from Landsat 5 data (TM) and from Orthophotos from 2010. The behavior of the samples varied accordingly to the different group profiles. The low-end group presented the highest thermal amplitudes and more significant absence of urban vegetation linked, both to low urbanization and construction standards. The average standard group is characterized by the predominance of vertical buildings and lacks urban trees amidst a consolidated urban landscape. The average-high standard group displayed the highest concentration of green urban areas, distributed homogeneously in most samples, so this group presented low variations both in temperature amplitude and in the Normalized Difference Vegetation Index (NDVI). The correlation tests showed strong negative correlations between samples of Land Surface Temperature (LST) and the NDVI samples, of -0.58 in 1985, -0.43 in 2004 and -0.82 in 2010. Understanding the relations between the different patterns of land use, surface temperature and the NDVI (with due concern for environmental planning) is an important step in the identification and rehabilitation of enviromentally. This research is part of the Thematic Project FAPESP 08/58161 -1 process, \"Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options\", Component 5: Vulnerability of the metropolitan region of São Paulo to climate Change.
4

A relação entre a temperatura radiométrica de superfície (Land Surface Temperature-LST), índice de vegetação (Normalizes Diference Vegetation Index-NDVI) e os diferentes padrões de uso da terra do município de São Paulo / The relationship between surface radiometric temperature (Land Surface Temperature-LST), vegetation index (Normalized Vegetation Index diference-NDVI) and the different land use patterns in São Paulo-SP.

Bruna Luiza Pereira de Jesus 15 September 2015 (has links)
Esse trabalho tem como objetivo compreender as relações entre a Land Surface Temperature (LST), Normalized Difference Vegetation Índex (NDVI) e os padrões do uso da terra do município de São Paulo no período de 1985 a 2010. Analisou-se 15 bairros, nos quais foram extraídas 45 amostras aleatórias de diferentes padrões de uso da terra; subdivididas em baixo padrão, médio padrão e médio alto padrão. Com o aporte de geotecnologia, foi feita a extração dos dados das imagens de satélite Landsat 5 (TM) e das Ortofotos do ano de 2010. O comportamento das amostras variou de acordo como os diferentes perfis dos grupos analisados. O grupo de baixo padrão foi o que apresentou as maiores amplitudes térmicas, ausência de arborização urbana atreladas a um baixo padrão construtivo. O grupo de médio padrão é caracterizado pela predominância de área verticalizada e apresenta uma arborização urbana escassa em meio a uma malha urbana consolidada. O grupo de médio alto padrão foi o que mais apresentou arborização urbana, distribuída de forma homogênea na maioria das amostras, portanto foi o grupo que teve baixas amplitudes térmicas e o índice de Normalized Difference Vegetation Index (NDVI) com pouca variação. Os testes mostraram fortes correlações negativas entre as amostras de Land Surface Temperature (LST) e o índice de Normalized Difference Vegetation Index (NDVI), sendo -0,58 em 1985, -0,43 em 2004 e -0,82 em 2010. Os diferentes padrões de uso da terra, relacionados à temperatura de superfície, e o índice de vegetação, aliado à preocupação com o planejamento ambiental, deve resultar na melhoria da qualidade de vida da população. Esta pesquisa faz parte do Projeto Temático processo FAPESP 08/58161 -1, \"Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options\", Component 5: Vulnerability of the metropolitan region of São Paulo to climate Change. / This study aims to understand the relationship between Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) and the patterns of land use in the municipality of São Paulo, from 1985 to 2010. A totoal of 45 random samples were extracted from the 15 districts used in this study, with different patterns of land use which were subdivided into three different clases: low-end, middle and middle-high. Geospatial approaches allowed the extraction of satellite image data from Landsat 5 data (TM) and from Orthophotos from 2010. The behavior of the samples varied accordingly to the different group profiles. The low-end group presented the highest thermal amplitudes and more significant absence of urban vegetation linked, both to low urbanization and construction standards. The average standard group is characterized by the predominance of vertical buildings and lacks urban trees amidst a consolidated urban landscape. The average-high standard group displayed the highest concentration of green urban areas, distributed homogeneously in most samples, so this group presented low variations both in temperature amplitude and in the Normalized Difference Vegetation Index (NDVI). The correlation tests showed strong negative correlations between samples of Land Surface Temperature (LST) and the NDVI samples, of -0.58 in 1985, -0.43 in 2004 and -0.82 in 2010. Understanding the relations between the different patterns of land use, surface temperature and the NDVI (with due concern for environmental planning) is an important step in the identification and rehabilitation of enviromentally. This research is part of the Thematic Project FAPESP 08/58161 -1 process, \"Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options\", Component 5: Vulnerability of the metropolitan region of São Paulo to climate Change.
5

Evaluation of Heat Mapping Techniques – the Case of Linköping

Zhao, Pei January 2023 (has links)
Land surface temperature (LST) and mean radiant temperature (MRT) are commonly used as proxies to evaluate urban heat environments. Many scholars use one of them to represent heat exposure when assessing the urban thermal environment. This research fills a research gap by analyzing two meteorological parameters simultaneously through correlation analysis, hotspot analysis, and the distinctive information they respectively express with the results of vulnerable population distribution based on the case of Linköping. Scatter plots are used to explore the correlation between LST and MRT, and hot spot analysis is applied to investigate their spatial patterns through the clusters of hot and cold spots. Furthermore, the distribution of vulnerable populations is assessed and visualized through a vulnerability index. The results show that there is a moderate positive linear correlation between the mean values of LST and MRT for the whole study area. They have different spatial patterns based on the results of the hot spot analysis. The comparison of different meteorological parameters to the vulnerability index also shows variations in high heat risk areas. All of these conclude that LST or MRT could, to some extent, be presented as references to each other; however, they cannot be used interchangeably as proxies for urban heat exposure. When developing urban thermal adaptation strategies, it is necessary for municipalities to select the parameters appropriately according to the purpose and requirements and to understand what the chosen parameters can and cannot convey.
6

Modelling Evapotranspiration from Satellite Data using semi-empirical Models : Applications to the Indian Subcontinent

Eswar, R January 2017 (has links) (PDF)
The major aim of this work is to develop a framework for the estimation of Evapotranspiration (ET) over the Indian landmass using remote sensing (RS) datasets in a repeated and consistent manner with improved spatial resolution. Different RS based ET models exist in the literature, out of which, the triangle, the S-SEBI and the Sim-ReSET models were compared for the estimation of daytime integrated latent heat flux (λEday). These three models were chosen as they can be driven only with RS based inputs without the need for any ground measurements. The results showed that the application of simpler contextual models may yield better results than physically based models when ground data is limited or not available. To improve the spatial resolution of one of the key surface variable, Land Surface Temperature (LST), the performance of five different vegetation indices Normalised Difference Vegetation Index (NDVI), Fraction Vegetation Cover (FVC), Normalised Difference Water Index (NDWI), Soil Adjusted Vegetation Index (SAVI) and Modified SAVI (MSAVI) were tested in the existing DisTrad disaggregation model. Results suggested that the most commonly used vegetation indices NDVI and FVC yielded better results only under wet conditions. Under drier surface conditions, using NDWI for disaggregation resulted in relatively higher accurate LST. A model for spatial disaggregation of Evaporative Fraction (EF) called DEFrac (Disaggregation of Evaporative Fraction) was developed based on the relationship between EF and NDVI to obtain finer spatial resolution EF from coarser resolution estimates. The experimental results suggested that the DEFrac model developed in this study, yielded more accurate disaggregated EF. The disaggregated EF was further used to get disaggregated λEday. Finally, The issue of lack of proper ET dataset over India was addressed by developing two data products one over entire India at 0.05° spatial resolution and the second product over the Kabini basin at 1 km spatial resolution. Both the products were developed with a temporal resolution of 8-day and for the period 2001–2014. The developed ET products were validated against ground observed data at seven sites across India and against ET simulated by a hydrological model over a forested watershed. Further the developed ET products were compared with some other global ET products such as MOD16, LandFlux Eval synthesis ET and GLEAM ET. Analyses revealed that only in regions where ET is predominantly driven by rainfall and where irrigation is not applied at very large scales, the global ET products tend to capture the ET patterns satisfactorily. On the other hand, the ET products developed in this work captured the spatial and temporal patterns of ET quite realistically all across India.
7

Spatio-temporal characterization of fractal intra-Urban Heat Islets

Anamika Shreevastava (9515447) 16 December 2020 (has links)
<div><br></div><div>Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Temperatures are further exacerbated in the urban areas due to the Urban Heat Island (UHI) effect resulting in increased heat-related mortality and morbidity. However, the spatial distribution of urban temperatures is highly heterogeneous. As a result, metrics such as UHI Intensity that quantify the difference between the average urban and non-urban air temperatures, often fail to characterize this spatial and temporal heterogeneity. My objective in this thesis is to understand and characterize the spatio-temporal dynamics of UHI for cities across the world. This has several applications, such as targeted heat mitigation, energy load estimation, and neighborhood-level vulnerability estimation.</div><div><br></div><div>Towards this end, I have developed a novel multi-scale framework of identifying emerging heat clusters at various percentile-based thermal thresholds T<sub>thr</sub> and refer to them collectively as <i>intra-Urban Heat Islets</i>. Using the Land Surface Temperatures from Landsat for 78 cities representative of the global diversity, I have showed that the heat islets have a fractal spatial structure. They display properties analogous to that of a percolating system as T<sub>thr</sub> varies. At the percolation threshold, the size distribution of these islets in all cities follows a power-law, with a scaling exponent = 1.88 and an aggregated Area-Perimeter Fractal Dimension =1.33. This commonality indicates that despite the diversity in urban form and function across the world, the urban temperature patterns are different realizations with the same aggregated statistical properties. In addition, analogous to the UHI Intensity, the mean islet intensity, i.e., the difference between mean islet temperature and thermal threshold, is estimated for each islet, and their distribution follows an exponential curve. This allows for a single metric (exponential rate parameter) to serve as a comprehensive measure of thermal heterogeneity and improve upon the traditional UHI Intensity as a bulk metric.</div><div><br></div><div><br></div><div>To study the impact of urban form on the heat islet characteristics, I have introduced a novel lacunarity-based metric, which quantifies the degree of compactness of the heat islets. I have shown that while the UHIs have similar fractal structure at their respective percolation threshold, differences across cities emerge when we shift the focus to the hottest islets (T<sub>thr</sub> = 90<sup>th</sup> percentile). Analysis of heat islets' size distribution demonstrates the emergence of two classes where the dense cities maintain a power law, whereas the sprawling cities show an exponential deviation at higher thresholds. This indicates a significantly reduced probability of encountering large heat islets for sprawling cities. In contrast, analysis of heat islet intensity distributions indicates that while a sprawling configuration is favorable for reducing the mean Surface UHI Intensity of a city, for the same mean, it also results in higher local thermal extremes. </div><div><br></div><div>Lastly, I have examined the impact of external forcings such as heatwaves (HW) on the heat islet characteristics. As a case study, the European heatwave of 2018 is simulated using the Weather Research Forecast model with a focus on Paris. My results indicate that the UHI Intensity under this HW reduces during night time by 1<sup>o</sup>C on average. A surface energy budget analysis reveals that this is due to drier and hotter rural background temperatures during the HW period.</div><div>To analyze the response of heat islets at every spatial scale, power spectral density analysis is done. The results show that large contiguous heat islets (city-scale) persist throughout the day during a HW, whereas the smaller islets (neighborhood-scale) display a diurnal variability that is the same as non-HW conditions. </div><div><br></div><div>In conclusion, I have presented a new viewpoint of the UHI as an archipelago of intra-urban heat islets. Along the way, I have introduced several properties that enable a seamless comparison of thermal heterogeneity across diverse cities as well as under diverse climatic conditions. This thesis is a step towards a comprehensive characterization of heat from the spatial scales of an urban block to a megalopolis.</div><div><br></div>

Page generated in 0.102 seconds