• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 15
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dynamic Programming with Multiple Candidates and its Applications to Sign Language and Hand Gesture Recognition

Yang, Ruiduo 07 March 2008 (has links)
Dynamic programming has been widely used to solve various kinds of optimization problems.In this work, we show that two crucial problems in video-based sign language and gesture recognition systems can be attacked by dynamic programming with additional multiple observations. The first problem occurs at the higher (sentence) level. Movement epenthesis [1] (me), i.e., the necessary but meaningless movement between signs, can result in difficulties in modeling and scalability as the number of signs increases. The second problem occurs at the lower (feature) level. Ambiguity of hand detection and occlusion will propagate errors to the higher level. We construct a novel framework that can handle both of these problems based on a dynamic programming approach. The me has only be modeled explicitly in the past. Our proposed method tries to handle me in a dynamic programming framework where we model the me implicitly. We call this enhanced Level Building (eLB) algorithm. This formulation also allows the incorporation of statistical grammar models such as bigrams and trigrams. Another dynamic programming process that handles the problem of selecting among multiple hand candidates is also included in the feature level. This is different from most of the previous approaches, where a single observation is used. We also propose a grouping process that can generate multiple, overlapping hand candidates. We demonstrate our ideas on three continuous American Sign Language data sets and one hand gesture data set. The ASL data sets include one with a simple background, one with a simple background but with the signer wearing short sleeved clothes, and the last with a complex and changing background. The gesture data set contains color gloved gestures with a complex background. We achieve within 5% performance loss from the automatically chosen me score compared with the manually chosen me score. At the low level, we first over segment each frame to get a list of segments. Then we use a greedy method to group the segments based on different grouping cues. We also show that the performance loss is within 5% when we compare this method with manually selected feature vectors.
12

Measuring, refining and calibrating speaker and language information extracted from speech

Brummer, Niko 12 1900 (has links)
Thesis (PhD (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: We propose a new methodology, based on proper scoring rules, for the evaluation of the goodness of pattern recognizers with probabilistic outputs. The recognizers of interest take an input, known to belong to one of a discrete set of classes, and output a calibrated likelihood for each class. This is a generalization of the traditional use of proper scoring rules to evaluate the goodness of probability distributions. A recognizer with outputs in well-calibrated probability distribution form can be applied to make cost-effective Bayes decisions over a range of applications, having di fferent cost functions. A recognizer with likelihood output can additionally be employed for a wide range of prior distributions for the to-be-recognized classes. We use automatic speaker recognition and automatic spoken language recognition as prototypes of this type of pattern recognizer. The traditional evaluation methods in these fields, as represented by the series of NIST Speaker and Language Recognition Evaluations, evaluate hard decisions made by the recognizers. This makes these recognizers cost-and-prior-dependent. The proposed methodology generalizes that of the NIST evaluations, allowing for the evaluation of recognizers which are intended to be usefully applied over a wide range of applications, having variable priors and costs. The proposal includes a family of evaluation criteria, where each member of the family is formed by a proper scoring rule. We emphasize two members of this family: (i) A non-strict scoring rule, directly representing error-rate at a given prior. (ii) The strict logarithmic scoring rule which represents information content, or which equivalently represents summarized error-rate, or expected cost, over a wide range of applications. We further show how to form a family of secondary evaluation criteria, which by contrasting with the primary criteria, form an analysis of the goodness of calibration of the recognizers likelihoods. Finally, we show how to use the logarithmic scoring rule as an objective function for the discriminative training of fusion and calibration of speaker and language recognizers. / AFRIKAANSE OPSOMMING: Ons wys hoe om die onsekerheid in die uittree van outomatiese sprekerherkenning- en taalherkenningstelsels voor te stel, te meet, te kalibreer en te optimeer. Dit maak die bestaande tegnologie akkurater, doeltre ender en meer algemeen toepasbaar.
13

Reconnaissance de langages en temps réel par des automates cellulaires avec contraintes

Borello, Alex 12 December 2011 (has links)
Dans cette thèse, on s'intéresse aux automates cellulaires en tant que modèle de calcul permettant de reconnaître des langages. Dans un tel domaine, il est toujours difficile d'établir des résultats négatifs, typiquement de prouver qu'un langage donné n'est pas reconnu en une certaine fonction de temps par une certaine classe d'automates. On se focalisera en particulier sur les classes de faible complexité comme le temps réel, au sujet desquelles de nombreuses questions restent ouvertes.Dans une première partie, on propose plusieurs manières d'affaiblir encore les classes de langages étudiées, permettant ainsi d'obtenir des exemples de résultats négatifs. Dans une seconde partie, on montre un théorème d'accélération par automate cellulaire d'un modèle séquentiel, les automates finis oublieux. Ce modèle est une version a priori affaiblie, mais non triviale, des automates finis à plusieurs têtes de lecture. / This document deals with cellular automata as a model of computation used to recognise languages. In such a domain, it is always difficult to provide negative results, that is, typically, to prove that a given language is not recognised in some function of time by some class of automata. The document focuses in particular on the low-complexity classes such as real time, about which a lot of questions remain open since several decades.In a first part, several techniques to weaken further still these classes of languages are investigated, thereby bringing examples of negative results. A second part is dedicated to the comparison of cellular automata with another model language recognition, namely multi-head finite automata. This leads to speed-up theorem when finite automata are oblivious, which makes them a priori weaker than in the general case but leaves them a nontrivial power.
14

Sistema de reconhecimento automático de Língua Brasileira de Sinais / Automatic Recognition System of Brazilian Sign Language

Teodoro, Beatriz Tomazela 23 October 2015 (has links)
O reconhecimento de língua de sinais é uma importante área de pesquisa que tem como objetivo atenuar os obstáculos impostos no dia a dia das pessoas surdas e/ou com deficiência auditiva e aumentar a integração destas pessoas na sociedade majoritariamente ouvinte em que vivemos. Baseado nisso, esta dissertação de mestrado propõe o desenvolvimento de um sistema de informação para o reconhecimento automático de Língua Brasileira de Sinais (LIBRAS), que tem como objetivo simplificar a comunicação entre surdos conversando em LIBRAS e ouvintes que não conheçam esta língua de sinais. O reconhecimento é realizado por meio do processamento de sequências de imagens digitais (vídeos) de pessoas se comunicando em LIBRAS, sem o uso de luvas coloridas e/ou luvas de dados e sensores ou a exigência de gravações de alta qualidade em laboratórios com ambientes controlados, focando em sinais que utilizam apenas as mãos. Dada a grande dificuldade de criação de um sistema com este propósito, foi utilizada uma abordagem para o seu desenvolvimento por meio da divisão em etapas. Considera-se que todas as etapas do sistema proposto são contribuições para trabalhos futuros da área de reconhecimento de sinais, além de poderem contribuir para outros tipos de trabalhos que envolvam processamento de imagens, segmentação de pele humana, rastreamento de objetos, entre outros. Para atingir o objetivo proposto foram desenvolvidas uma ferramenta para segmentar sequências de imagens relacionadas à LIBRAS e uma ferramenta para identificar sinais dinâmicos nas sequências de imagens relacionadas à LIBRAS e traduzi-los para o português. Além disso, também foi construído um banco de imagens de 30 palavras básicas escolhidas por uma especialista em LIBRAS, sem a utilização de luvas coloridas, laboratórios com ambientes controlados e/ou imposição de exigências na vestimenta dos indivíduos que executaram os sinais. O segmentador implementado e utilizado neste trabalho atingiu uma taxa média de acurácia de 99,02% e um índice overlap de 0,61, a partir de um conjunto de 180 frames pré-processados extraídos de 18 vídeos gravados para a construção do banco de imagens. O algoritmo foi capaz de segmentar pouco mais de 70% das amostras. Quanto à acurácia para o reconhecimento das palavras, o sistema proposto atingiu 100% de acerto para reconhecer as 422 amostras de palavras do banco de imagens construído, as quais foram segmentadas a partir da combinação da técnica de distância de edição e um esquema de votação com um classificador binário para realizar o reconhecimento, atingindo assim, o objetivo proposto neste trabalho com êxito. / The recognition of sign language is an important research area that aims to mitigate the obstacles in the daily lives of people who are deaf and/or hard of hearing and increase their integration in the majority hearing society in which we live. Based on this, this dissertation proposes the development of an information system for automatic recognition of Brazilian Sign Language (BSL), which aims to simplify the communication between deaf talking in BSL and listeners who do not know this sign language. The recognition is accomplished through the processing of digital image sequences (videos) of people communicating in BSL without the use of colored gloves and/or data gloves and sensors or the requirement of high quality recordings in laboratories with controlled environments focusing on signals using only the hands. Given the great difficulty of setting up a system for this purpose, an approach divided in several stages was used. It considers that all stages of the proposed system are contributions for future works of sign recognition area, and can contribute to other types of works involving image processing, human skin segmentation, object tracking, among others. To achieve this purpose we developed a tool to segment sequences of images related to BSL and a tool for identifying dynamic signals in the sequences of images related to the BSL and translate them into portuguese. Moreover, it was also built an image bank of 30 basic words chosen by a BSL expert without the use of colored gloves, laboratory-controlled environments and/or making of the dress of individuals who performed the signs. The segmentation algorithm implemented and used in this study had a average accuracy rate of 99.02% and an overlap of 0.61, from a set of 180 preprocessed frames extracted from 18 videos recorded for the construction of database. The segmentation algorithm was able to target more than 70% of the samples. Regarding the accuracy for recognizing words, the proposed system reached 100% accuracy to recognize the 422 samples from the database constructed (the ones that were segmented), using a combination of the edit distance technique and a voting scheme with a binary classifier to carry out the recognition, thus reaching the purpose proposed in this work successfully.
15

Sistema de reconhecimento automático de Língua Brasileira de Sinais / Automatic Recognition System of Brazilian Sign Language

Beatriz Tomazela Teodoro 23 October 2015 (has links)
O reconhecimento de língua de sinais é uma importante área de pesquisa que tem como objetivo atenuar os obstáculos impostos no dia a dia das pessoas surdas e/ou com deficiência auditiva e aumentar a integração destas pessoas na sociedade majoritariamente ouvinte em que vivemos. Baseado nisso, esta dissertação de mestrado propõe o desenvolvimento de um sistema de informação para o reconhecimento automático de Língua Brasileira de Sinais (LIBRAS), que tem como objetivo simplificar a comunicação entre surdos conversando em LIBRAS e ouvintes que não conheçam esta língua de sinais. O reconhecimento é realizado por meio do processamento de sequências de imagens digitais (vídeos) de pessoas se comunicando em LIBRAS, sem o uso de luvas coloridas e/ou luvas de dados e sensores ou a exigência de gravações de alta qualidade em laboratórios com ambientes controlados, focando em sinais que utilizam apenas as mãos. Dada a grande dificuldade de criação de um sistema com este propósito, foi utilizada uma abordagem para o seu desenvolvimento por meio da divisão em etapas. Considera-se que todas as etapas do sistema proposto são contribuições para trabalhos futuros da área de reconhecimento de sinais, além de poderem contribuir para outros tipos de trabalhos que envolvam processamento de imagens, segmentação de pele humana, rastreamento de objetos, entre outros. Para atingir o objetivo proposto foram desenvolvidas uma ferramenta para segmentar sequências de imagens relacionadas à LIBRAS e uma ferramenta para identificar sinais dinâmicos nas sequências de imagens relacionadas à LIBRAS e traduzi-los para o português. Além disso, também foi construído um banco de imagens de 30 palavras básicas escolhidas por uma especialista em LIBRAS, sem a utilização de luvas coloridas, laboratórios com ambientes controlados e/ou imposição de exigências na vestimenta dos indivíduos que executaram os sinais. O segmentador implementado e utilizado neste trabalho atingiu uma taxa média de acurácia de 99,02% e um índice overlap de 0,61, a partir de um conjunto de 180 frames pré-processados extraídos de 18 vídeos gravados para a construção do banco de imagens. O algoritmo foi capaz de segmentar pouco mais de 70% das amostras. Quanto à acurácia para o reconhecimento das palavras, o sistema proposto atingiu 100% de acerto para reconhecer as 422 amostras de palavras do banco de imagens construído, as quais foram segmentadas a partir da combinação da técnica de distância de edição e um esquema de votação com um classificador binário para realizar o reconhecimento, atingindo assim, o objetivo proposto neste trabalho com êxito. / The recognition of sign language is an important research area that aims to mitigate the obstacles in the daily lives of people who are deaf and/or hard of hearing and increase their integration in the majority hearing society in which we live. Based on this, this dissertation proposes the development of an information system for automatic recognition of Brazilian Sign Language (BSL), which aims to simplify the communication between deaf talking in BSL and listeners who do not know this sign language. The recognition is accomplished through the processing of digital image sequences (videos) of people communicating in BSL without the use of colored gloves and/or data gloves and sensors or the requirement of high quality recordings in laboratories with controlled environments focusing on signals using only the hands. Given the great difficulty of setting up a system for this purpose, an approach divided in several stages was used. It considers that all stages of the proposed system are contributions for future works of sign recognition area, and can contribute to other types of works involving image processing, human skin segmentation, object tracking, among others. To achieve this purpose we developed a tool to segment sequences of images related to BSL and a tool for identifying dynamic signals in the sequences of images related to the BSL and translate them into portuguese. Moreover, it was also built an image bank of 30 basic words chosen by a BSL expert without the use of colored gloves, laboratory-controlled environments and/or making of the dress of individuals who performed the signs. The segmentation algorithm implemented and used in this study had a average accuracy rate of 99.02% and an overlap of 0.61, from a set of 180 preprocessed frames extracted from 18 videos recorded for the construction of database. The segmentation algorithm was able to target more than 70% of the samples. Regarding the accuracy for recognizing words, the proposed system reached 100% accuracy to recognize the 422 samples from the database constructed (the ones that were segmented), using a combination of the edit distance technique and a voting scheme with a binary classifier to carry out the recognition, thus reaching the purpose proposed in this work successfully.
16

Segmental discriminative analysis for American Sign Language recognition and verification

Yin, Pei 06 April 2010 (has links)
This dissertation presents segmental discriminative analysis techniques for American Sign Language (ASL) recognition and verification. ASL recognition is a sequence classification problem. One of the most successful techniques for recognizing ASL is the hidden Markov model (HMM) and its variants. This dissertation addresses two problems in sign recognition by HMMs. The first is discriminative feature selection for temporally-correlated data. Temporal correlation in sequences often causes difficulties in feature selection. To mitigate this problem, this dissertation proposes segmentally-boosted HMMs (SBHMMs), which construct the state-optimized features in a segmental and discriminative manner. The second problem is the decomposition of ASL signs for efficient and accurate recognition. For this problem, this dissertation proposes discriminative state-space clustering (DISC), a data-driven method of automatically extracting sub-sign units by state-tying from the results of feature selection. DISC and SBHMMs can jointly search for discriminative feature sets and representation units of ASL recognition. ASL verification, which determines whether an input signing sequence matches a pre-defined phrase, shares similarities with ASL recognition, but it has more prior knowledge and a higher expectation of accuracy. Therefore, ASL verification requires additional discriminative analysis not only in utilizing prior knowledge but also in actively selecting a set of phrases that have a high expectation of verification accuracy in the service of improving the experience of users. This dissertation describes ASL verification using CopyCat, an ASL game that helps deaf children acquire language abilities at an early age. It then presents the "probe" technique which automatically searches for an optimal threshold for verification using prior knowledge and BIG, a bi-gram error-ranking predictor which efficiently selects/creates phrases that, based on the previous performance of existing verification systems, should have high verification accuracy. This work demonstrates the utility of the described technologies in a series of experiments. SBHMMs are validated in ASL phrase recognition as well as various other applications such as lip reading and speech recognition. DISC-SBHMMs consistently produce fewer errors than traditional HMMs and SBHMMs in recognizing ASL phrases using an instrumented glove. Probe achieves verification efficacy comparable to the optimum obtained from manually exhaustive search. Finally, when verifying phrases in CopyCat, BIG predicts which CopyCat phrases, even unseen in training, will have the best verification accuracy with results comparable to much more computationally intensive methods.
17

The Efficacy of the Eigenvector Approach to South African Sign Language Identification

Segers, Vaughn Mackman January 2010 (has links)
Masters of Science / The communication barriers between deaf and hearing society mean that interaction between these communities is kept to a minimum. The South African Sign Language research group, Integration of Signed and Verbal Communication: South African Sign Language Recognition and Animation (SASL), at the University of the Western Cape aims to create technologies to bridge the communication gap. In this thesis we address the subject of whole hand gesture recognition. We demonstrate a method to identify South African Sign Language classifiers using an eigenvector approach. The classifiers researched within this thesis are based on those outlined by the Thibologa Sign Language Institute for SASL. Gesture recognition is achieved in real time. Utilising a pre-processing method for image registration we are able to increase the recognition rates for the eigenvector approach.
18

FONOTAKTICKÉ A AKUSTICKÉ ROZPOZNÁVÁNÍ JAZYKŮ / PHONOTACTIC AND ACOUSTIC LANGUAGE RECOGNITION

Matějka, Pavel January 2009 (has links)
Práce pojednává o fonotaktickém a akustickém přístupu pro automatické rozpoznávání jazyka. První část práce pojednává o fonotaktickém přístupu založeném na výskytu fonémových sekvenci v řeči. Nejdříve je prezentován popis vývoje fonémového rozpoznávače jako techniky pro přepis řeči do sekvence smysluplných symbolů. Hlavní důraz je kladen na dobré natrénování fonémového rozpoznávače a kombinaci výsledků z několika fonémových rozpoznávačů trénovaných na různých jazycích (Paralelní fonémové rozpoznávání následované jazykovými modely (PPRLM)). Práce také pojednává o nové technice anti-modely v PPRLM a studuje použití fonémových grafů místo nejlepšího přepisu. Na závěr práce jsou porovnány dva přístupy modelování výstupu fonémového rozpoznávače -- standardní n-gramové jazykové modely a binární rozhodovací stromy. Hlavní přínos v akustickém přístupu je diskriminativní modelování cílových modelů jazyků a první experimenty s kombinací diskriminativního trénování a na příznacích, kde byl odstraněn vliv kanálu. Práce dále zkoumá různé druhy technik fúzi akustického a fonotaktického přístupu. Všechny experimenty jsou provedeny na standardních datech z NIST evaluaci konané v letech 2003, 2005 a 2007, takže jsou přímo porovnatelné s výsledky ostatních skupin zabývajících se automatickým rozpoznáváním jazyka. S fúzí uvedených technik jsme posunuli state-of-the-art výsledky a dosáhli vynikajících výsledků ve dvou NIST evaluacích.
19

Αυτόματος τεμαχισμός ψηφιακών σημάτων ομιλίας και εφαρμογή στη σύνθεση ομιλίας, αναγνώριση ομιλίας και αναγνώριση γλώσσας / Automatic segmentation of digital speech signals and application to speech synthesis, speech recognition and language recognition

Μπόρας, Ιωσήφ 19 October 2009 (has links)
Η παρούσα διατριβή εισάγει μεθόδους για τον αυτόματο τεμαχισμό σημάτων ομιλίας. Συγκεκριμένα παρουσιάζονται τέσσερις νέες μέθοδοι για τον αυτόματο τεμαχισμό σημάτων ομιλίας, τόσο για γλωσσολογικά περιορισμένα όσο και μη προβλήματα. Η πρώτη μέθοδος κάνει χρήση των σημείων του σήματος που αντιστοιχούν στα ανοίγματα των φωνητικών χορδών κατά την διάρκεια της ομιλίας για να εξάγει όρια ψευδό-φωνημάτων με χρήση του αλγορίθμου δυναμικής παραμόρφωσης χρόνου. Η δεύτερη τεχνική εισάγει μια καινοτόμα υβριδική μέθοδο εκπαίδευσης κρυμμένων μοντέλων Μαρκώφ, η οποία τα καθιστά πιο αποτελεσματικά στον τεμαχισμό της ομιλίας. Η τρίτη μέθοδος χρησιμοποιεί αλγορίθμους μαθηματικής παλινδρόμησης για τον συνδυασμό ανεξαρτήτων μηχανών τεμαχισμού ομιλίας. Η τέταρτη μέθοδος εισάγει μια επέκταση του αλγορίθμου Βιτέρμπι με χρήση πολλαπλών παραμετρικών τεχνικών για τον τεμαχισμό της ομιλίας. Τέλος, οι προτεινόμενες μέθοδοι τεμαχισμού χρησιμοποιούνται για την βελτίωση συστημάτων στο πρόβλημα της σύνθεσης ομιλίας, αναγνώρισης ομιλίας και αναγνώρισης γλώσσας. / The present dissertation introduces methods for the automatic segmentation of speech signals. In detail, four new segmentation methods are presented both in for the cases of linguistically constrained or not segmentation. The first method uses pitchmark points to extract pseudo-phonetic boundaries using dynamic time warping algorithm. The second technique introduces a new hybrid method for the training of hidden Markov models, which makes them more effective in the speech segmentation task. The third method uses regression algorithms for the fusion of independent segmentation engines. The fourth method is an extension of the Viterbi algorithm using multiple speech parameterization techniques for segmentation. Finally, the proposed methods are used to improve systems in the task of speech synthesis, speech recognition and language recognition.
20

Real-Time Finger Spelling American Sign Language Recognition Using Deep Convolutional Neural Networks

Viswavarapu, Lokesh Kumar 12 1900 (has links)
This thesis presents design and development of a gesture recognition system to recognize finger spelling American Sign Language hand gestures. We developed this solution using the latest deep learning technique called convolutional neural networks. This system uses blink detection to initiate the recognition process, Convex Hull-based hand segmentation with adaptive skin color filtering to segment hand region, and a convolutional neural network to perform gesture recognition. An ensemble of four convolutional neural networks are trained with a dataset of 25254 images for gesture recognition and a feedback unit called head pose estimation is implemented to validate the correctness of predicted gestures. This entire system was developed using Python programming language and other supporting libraries like OpenCV, Tensor flow and Dlib to perform various image processing and machine learning tasks. This entire application can be deployed as a web application using Flask to make it operating system independent.

Page generated in 0.1015 seconds