Spelling suggestions: "subject:"large binocular telescope"" "subject:"large binocular elescope""
1 |
SOUL: the Single conjugated adaptive Optics Upgrade for LBTPinna, E., Esposito, S., Hinz, P., Agapito, G., Bonaglia, M., Puglisi, A., Xompero, M., Riccardi, A., Briguglio, R., Arcidiacono, C., Carbonaro, L., Fini, L., Montoya, M., Durney, O. 27 July 2016 (has links)
We present here SOUL: the Single conjugated adaptive Optics Upgrade for LBT. Soul will upgrade the wavefront sensors replacing the existing CCD detector with an EMCCD camera and the rest of the system in order to enable the closed loop operations at a faster cycle rate and with higher number of slopes. Thanks to reduced noise, higher number of pixel and framerate, we expect a gain (for a given SR) around 1.5-2 magnitudes at all wavelengths in the range 7.5 <mR <18. The correction at short wavelength will be greatly improved (SR>70% in I-band and 0.6asec seeing) and the sky coverage will be multiplied by a factor 5 at all galactic latitudes. Upgrading the SCAO systems at all the 4 focal stations, SOUL will provide these benefits in 2017 to the LBTI interferometer and in 2018 to the 2 LUCI NIR spectro-imagers. In the same year the SOUL correction will be exploited also by the new generation of LBT instruments: V-SHARK, SHARK-NIR and iLocater.
|
2 |
OVMS-plus at the LBT: disturbance compensation simplifiedBöhm, Michael, Pott, Jörg-Uwe, Borelli, José, Hinz, Phil, Defrère, Denis, Downey, Elwood, Hill, John, Summers, Kellee, Conrad, Al, Kürster, Martin, Herbst, Tom, Sawodny, Oliver 27 July 2016 (has links)
In this paper we will briefly revisit the optical vibration measurement system (OVMS) at the Large Binocular Telescope (LBT) and how these values are used for disturbance compensation and particularly for the LBT Interferometer (LBTI) and the LBT Interferometric Camera for Near-Infrared and Visible Adaptive Interferometry for Astronomy (LINC-NIRVANA). We present the now centralized software architecture, called OVMS+, on which our approach is based and illustrate several challenges faced during the implementation phase. Finally, we will present measurement results from LBTI proving the effectiveness of the approach and the ability to compensate for a large fraction of the telescope induced vibrations.
|
3 |
On-sky single-mode fiber coupling measurements at the Large Binocular TelescopeBechter, Andrew, Crass, Jonathan, Ketterer, Ryan, Crepp, Justin R., Reynolds, Robert O., Bechter, Eric, Hinz, Philip, Pedichini, Fernando, Foley, Michael, Runburg, Elliott, Onuma, Eleanya E., Gaudi, Scott, Micela, Giuseppina, Pagano, Isabella, Woodward, Charles E. 27 July 2016 (has links)
The demonstration of efficient single-mode fiber (SMF) coupling is a key requirement for the development of a compact, ultra-precise radial velocity (RV) spectrograph. iLocater is a next generation instrument for the Large Binocular Telescope (LBT) that uses adaptive optics (AO) to inject starlight into a SMF. In preparation for commissioning iLocater, a prototype SMF injection system was installed and tested at the LBT in the Y-band (0.970-1.065 mu m). This system was designed to verify the capability of the LBT AO system as well as characterize on-sky SMF coupling efficiencies. SMF coupling was measured on stars with variable airmasses, apparent magnitudes, and seeing conditions for six half-nights using the Large Binocular Telescope Interferometer. We present the overall optical and mechanical performance of the SMF injection system, including details of the installation and alignment procedure. A particular emphasis is placed on analyzing the instrument's performance as a function of telescope elevation to inform the final design of the fiber injection system for iLocater.
|
Page generated in 0.0535 seconds