• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large-scale robotic 3D printing : Standardized tests to dial in new materials for IRBAM architecture

Nieto Pareja, Pablo January 2024 (has links)
Large Scale Additive Manufacturing (LSAM) technology has emerged as a transformative force in the manufacturing industry. Using robots and advanced material deposition systems, LSAM facilitates the efficient creation of large-scale components with exceptional precision and reduced production times. Beyond its capacity to manufacture complex structures, this technology drives innovation by fostering the exploration of new materials and designs, opening new frontiers in the aerospace, automotive, and construction sectors. The synergy between robotics and additive manufacturing in LSAM represents a significant advancement toward the future of manufacturing, where customization, efficiency, and sustainability are paramount.  Within the framework of this research, conducted in collaboration with ABB and RISE, a series of tests have been developed to optimize printing parameters when transitioning from one material to another. This study showcases how simple adjustments in the workflow of robotic stations can lead to significant improvements in print quality and increased resource efficiency, paving the way for more precise and sustainable manufacturing.  This research has not only generated valuable insights into the behavior of LSAM under different operating conditions but also provided practical solutions for its continuous improvement. These findings are relevant for the continuous improvement of large-scale additive manufacturing processes and provide important insights for future research in the fields of robotics and advanced manufacturing. Additionally, a systematic methodology has been developed to evaluate and validate results, ensuring the reliability and reproducibility of findings. These achievements solidify the role of LSAM as a fundamental technology in the evolution of the manufacturing industry toward a more efficient and sustainable future.
2

Participatory design of a 3D-printed furniture concept for learning spaces : A study of large-scale additive manufacturing opportunities and limitations

Lundgren, Herman January 2021 (has links)
Today, learning spaces are stuck in the industrial age with rows of desks and chairs. Differentiated teaching and personalised learning are not effective in traditional learning spaces and should focus on creating future classrooms (Kariippanon, 2017). This thesis is covering how furnishing for learning environments can be improved and designed through a participatory design process with Katedralskolan in Växjö by using recycled materials and additive manufacturing technology. The thesis is also exploring the opportunities of involving stakeholders to create new learning through the additive manufacturing process in interior and furniture design. Together with Katedralskolan and Sculptur, this project is exploring a concept for schools to have integrated education in interior design through semiotics that will contribute to students’ learning and explore large-scale additive manufacturing. The objective is to design a collection of interior products that will inform and communicate at an educational level and how a circular manufacturing technique is possible through 3D-printing using communicating design and semiotics. The aim is also to understand Sculptur’s product development- and manufacturing process through large-scale 3D-printing. The mission statement whereas follows: Develop a furniture concept based on an understanding of the needs of, and participation with, the user group in a co-design process as a case to study the large-scale additive manufacturing techniques together with the given conditions provided by Sculptur. The thesis process has been following an iterative design process called the design thinking process (The Interaction Design Foundation, 2021) and a co-designing process (Sanders, 2018). The design thinking process is a design methodology that provides a solution-based approach to solving problems. The five stages of Design Thinking are as follows: Empathise, Define, Ideate, Prototype, Test. Through studies, surveys, and observations a list of stakeholder needs was created and was used when developing ideas through workshops, drawings, and prototyping. The ideas were then developed into concepts that were tested through both desktop 3D-printing and large-scale additive manufacturing. The concepts were also evaluated by stakeholders as well as through a concept evaluating matrix (Wikberg N., et.al., 2015). The result of this master thesis is the conclusion of the furniture concept as well as the study of large-scale additive manufacturing as an industrial designer. The furniture concept “Unfold lounge chair” is based on stakeholder needs and manufacturing restrictions. It is also an attempt to use theory to make the next generation of pedagogical furnishings using sustainable and circular manufacturing techniques. Through design thinking, the master thesis result was created with a human-centred approach to integrate the needs of people, the possibilities of technology and the requirements for business success (IDEO, n.d.). / Idag sitter läromiljöer fast i den industriella epoken med rader av skrivbord och stolar. Differentierad undervisning och personlig inlärning är inte effektiv i traditionella läromiljöer och bör vara i fokus för att skapa framtidens klassrum (Kariippanon, 2017). Detta examensarbete tar upp hur inredning för inlärningsmiljöer kan förbättras och utformas genom en deltagande designprocess med Katedralskolan i Växjö med hjälp av återvunna material och additiv tillverkningsteknik. Arbetet har också undersökt möjligheterna att involvera intressenter för att skapa nytt lärande genom tillämpning av additiv tillverkning inom inredning och möbeldesign. Tillsammans med Katedralskolan och Sculptur har detta projekt undersökt ett koncept för skolor att ha integrerad utbildning i möbler genom semiotik och pedagogisk design som kommer att bidra till elevernas lärande samt utforska storskalig additiv tillverkning. Målet är att utforma en samling möbelkoncept som informerar och kommunicerar på utbildningsnivå och hur en cirkulär tillverkningsteknik är möjlig genom 3D-printnig med hjälp av kommuniationsdesign och semiotik. Målet är också att förstå Sculpturs produktutvecklings- och tillverkningsprocess genom storskalig additiv tillverkning. Projektets Mission statement var följande: Utveckla ett möbelkoncept baserat på en förståelse av behoven hos användargruppen i en samdesignprocess som ett fall för att studera storskalig additiv tillverkning tillsammans med de givna förutsättningarna från Sculptur. Examensarbetet har följt en iterativ designprocess som kallas design thinking process (The Interaction Design Foundation, 2021) tillsammans med en co-designprocess (Sanders, 2018). Design thinking är en designmetodik som ger en lösningsbaserad metod för att lösa problem. De fem faserna i design thinking är följande: Empathise, Define, Ideate, Prototype, Test. Genom studier, undersökningar och observationer skapades en lista över intressenters behov och användes när idéer utvecklades genom workshops, skisser och prototyper. Idéerna utvecklades sedan till koncept som sedan testades genom både mindre 3D-utskrift och storskalig additiv tillverkning. Koncepten utvärderades också av intressenter samt genom en konceptviktningsmatris (Wikberg N., et.al., 2015). Resultatet av detta examensarbete är sammanfattningen av möbelkonceptet samt studien av storskalig additiv tillverkning som industridesigner. Möbelkonceptet ”Unfold lounge chair” bygger på intressenternas behov samt tillverkningsrestriktioner. Det är också ett försök att använda teori för att skapa nästa generation av pedagogiska möbler med hållbara och cirkulära tillverkningstekniker. Genom design thinking skapades resultatet med ett mänskligt centrerat tillvägagångssätt för att integrera människors behov, teknikens möjligheter och kraven för produktens framgång (IDEO, n.d.).
3

FUSION BONDING OF FIBER REINFORCED SEMI-CRYSTALLINE POLYMERS IN EXTRUSION DEPOSITION ADDITIVE MANUFACTURING

Eduardo Barocio (5929505) 16 January 2020 (has links)
<p>Extrusion deposition additive manufacturing (EDAM) has enabled upscaling the dimensions of the objects that can be additively manufactured from the desktop scale to the size of a full vehicle. The EDAM process consists of depositing beads of molten material in a layer-by-layer manner, thereby giving rise to temperature gradients during part manufacturing. To investigate the phenomena involved in EDAM, the Composites Additive Manufacturing Research Instrument (CAMRI) was developed as part of this project. CAMRI provided unparalleled flexibility for conducting controlled experiments with carbon fiber reinforced semi-crystalline polymers and served as a validation platform for the work presented in this dissertation. </p> <p>Since the EDAM process is highly non-isothermal, modeling heat transfer in EDAM is of paramount importance for predicting interlayer bonding and evolution of internal stresses during part manufacturing. Hence, local heat transfer mechanisms were characterized and implemented in a framework for EDAM process simulations. These include local convection conditions, heat losses in material compaction as well as heat of crystallization or melting. Numerical predictions of the temperature evolution during the printing process of a part were in great agreement with experimental measurements by only calibrating the radiation ambient temperature. </p> In the absence of fibers reinforcing the interface between adjacent layers, the bond developed through the polymer is the primary mechanisms governing the interlayer fracture properties in printed parts. Hence, a fusion bonding model was extended to predict the evolution of interlayer fracture properties in EDAM with semi-crystalline polymer composites. The fusion bonding model was characterized and implemented in the framework for EDAM process simulation. Experimental verification of numerical predictions obtained with the fusion bonding model for interlayer fracture properties is provided. Finally, this fusion bonding model bridges the gap between processing conditions and interlayer fracture properties which is extremely valuable for predicting regions with frail interlayer bond within a part.

Page generated in 0.1227 seconds