• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A tool for creating high-speed, memory efficient derivative codes for large scale applications

Stovboun, Alexei January 2000 (has links)
No description available.
2

Behavior Driven Development in a Large-Scale Application : Evaluation of Usage for Developing IFS Applications

Delshad, Payman January 2016 (has links)
Nowadays, Agile software development methods are often used in large multisite organizations that develop large-scale applications. Behavior Driven Development (BDD) is a relatively new Agile software development process where the development process starts with acceptance tests written in a natural language. The premise of BDD is to create a common and effective process of communication between different roles in a software project to ensure that every activity can be mapped to the business goal of the application. This thesis work aims to find an effective and efficient BDD process and to evaluate its usage in a large-scale application in a large multisite organization through a series of interviews, a controlled experiment, and an online survey. Furthermore, by means of the aforementioned experiment, the study measures the impact of an experimental usage of BDD on testing quality. To discover an effective and efficient BDD process, two alternatives with automated tests that run on different architectural layers, namely client layer and web service layer, were examined. Based on the defined metrics, the alternative with automated tests that ran directly on the web service layer was chosen as the more efficient process which was compared against the existing Agile-based baseline that used automated client tests. The results show that an efficient BDD process improves the testing quality significantly which can, in turn, result in a better overall software quality.
3

Future-competing battery chemistries for large-scale energy storage / Framtidens batterikemier för storskalig energilagring

Adolfsson, Erik January 2023 (has links)
’Netto-noll utsläpp’ i EU vid 2050 är ett av målen för att påskynda övergången från fossila bränslen till mer förnyelsebara och hållbara alternativ. Detta har däremot introducerat mer turbulens på elnäten. Ett av verktygen för att reglera och förbättra eldistributionen är stor-skaliga batterier, där litium-jon är den mest förekommande kemin. Men på grund av oro kring resursutbud och hopp om teknologidiversifiering har det påbörjat en sökning efter alternativ som kan användas i stället eller tillsammans med litium-jon batterier. Från en lång lista så har tre alternativ med hög potential identifierats. Dessa är nickel-vätgasbatteri, zink-brom flödesbatteri och järn-luftbatteri. Deras lämplighet undersöktes och diskuterades för flertalet användningsområden och för ett speciellt användarfall av Vattenfall. Slutsatsen var att utav de tre, så är det endast nickel-vätgas som kan förväntas vara ett bra alternativ för specifika fall, att zink-brom har få möjligheter att konkurrera och att järn-luft har väldigt hög potential men också många oklarheter som gör det svårt att förutspå dess utveckling. / With net-zero emissions set to be achieved in the EU by 2050, the transition from fossil-based energy sources to more renewable and green options are ever expanding. This puts a strain on the electricity grids because of the intermittent nature from these energy sources. To mitigate this battery systems are used, of which the lithium-ion battery is the most prevalent, and expected to only increase in use. However, material resource concerns and possible danger of over-reliance on one technology has opened for a search to find other alternatives that could be used instead or in conjunction with the battery. Out of a long list of batteries, the nickel-hydrogen battery, zinc-bromide flow battery and iron-air battery are three alternatives that have been identified to have potential. Their suitability was researched and discussed for various grid-applications. The result show that out of the three, it is only believed that the nickel-hydrogen battery have a definitive competitiveness, that the zinc bromide flow battery has few things going for it, and that the iron-air battery has large potential but just as large uncertainty surrounding its future. Lastly, a specific off-shore wind park case was investigated to see the practicality and competitiveness of the nickel-hydrogen battery compared to a specific lithium-ion chemistry.
4

DESIGN AND FABRICATION OF FLEXIBLE SENSORS FOR SINGLE-USE APPLICATIONS

Aiganym Yermembetova (13954878) 13 October 2022 (has links)
<p>The development of reliable, robust and low-cost sensor devices is growing in importance and an ongoing challenge. From environmental monitoring and household safety to food and biopharmaceutical industries, the necessity for specific analyte detection is crucial. Over the years researchers have come up with myriad materials that can be used for efficient sensing devices. The materials employed are governed by application and performance criteria as well as the sensing mechanism, which might be based on physical or chemical principles. In this thesis, two different types of electrochemical sensor technologies were examined with special attention paid to the application of the devices, the materials used, and their feasibility for scalable manufacturing.</p> <p>In the first study, binary mixtures of conducting and semiconducting nanomaterials were explored as promising candidates for the manufacturing of low-cost ethylene sensor on flexible substrates. Ethylene (C2H4) is a small plant hormone which has been shown to affect the growth and senescence of flowers, leaves and fruits. Currently available devices have demonstrated high ethylene sensitivities with great potential for technology size reduction; however, some are not practical for use outside of the laboratory, lack portability, or require more research to demonstrate their reproducibility and stability in different environments, as well as selectivity to C2H4 in large-scale applications. Conductometric gas sensors based on a combination of carbon nanotubes (CNTs) and exfoliated molybdenum disulfide (MoS2) coated with molecular receptors is demonstrated for the selective detection of ethylene, including details on materials preparation, manufacturing, and characterization. Mixtures of CNTs and exfoliated MoS2 were deposited onto screen-printed interdigitated electrodes on plastic substrates, with optimization for scalable and continuous manufacturing by roll-to-roll methods. C2H4 detection levels of 0.1 ppm were readily achieved with responses on the second timescale.</p> <p>The second sensor technology shows how thin-film potentiometric electrodes based on ion-selective membranes can be designed to tolerate sterilizing radiation while providing excellent performance and signal stability. This sensor's development was motivated by the expanding need for single-use bioreactor systems in the biopharmaceutical industry, which require strict control over cell culture conditions for several weeks or more. Until recently, critical analysis has been conducted mostly by offline or “at-line” sampling of aliquots withdrawn from the sterile bioreactor. The latter is inefficient and can increase the risk of contamination. Inspired by the challenges related to cost, integration and performance following irradiation a potentiometric pH electrode was developed, intended for single-use applications. It was shown to be radiation-tolerant while providing reliable data comparable to a commercial pH meter over a period of three months. The electrodes exhibited quasi-linear signal drifts of +0.28 mV/day or 0.005 pH units/day. Thin-film γ-irradiated electrodes could provide accurate pH readings in sterilized culture media using a single-point calibration, within 0.07 pH units of a commercial meter with glass electrode and daily calibration. Furthermore, to advance the development of market-ready sensors past the conceptual stage, a few automated processes for scalable membrane deposition were investigated.</p>

Page generated in 0.1278 seconds