Spelling suggestions: "subject:"largescale optimization methods"" "subject:"largerscale optimization methods""
1 |
Approches "problèmes inverses" régularisées pour l'imagerie sans lentille et la microscopie holographique en ligne / Regularized inverse problems approaches for lensless imaging and in-line holographie microscopyJolivet, Frederic 13 April 2018 (has links)
En imagerie numérique, les approches «problèmes inverses» régularisées reconstruisent une information d'intérêt à partir de mesures et d'un modèle de formation d'image. Le problème d'inversion étant mal posé, mal conditionné et le modèle de formation d'image utilisé peu contraint, il est nécessaire d'introduire des a priori afin de restreindre l'ambiguïté de l'inversion. Ceci permet de guider la reconstruction vers une solution satisfaisante. Les travaux de cette thèse ont porté sur le développement d'algorithmes de reconstruction d'hologrammes numériques, basés sur des méthodes d'optimisation en grande dimension (lisse ou non-lisse). Ce cadre général a permis de proposer différentes approches adaptées aux problématiques posées par cette technique d'imagerie non conventionnelle : la super-résolution, la reconstruction hors du champ du capteur, l'holographie «couleur» et enfin la reconstruction quantitative d'objets de phase (c.a.d. transparents). Dans ce dernier cas, le problème de reconstruction consiste à estimer la transmittance complexe 2D des objets ayant absorbé et/ou déphasé l'onde d'éclairement lors de l'enregistrement de l'hologramme. Les méthodes proposées sont validées à l'aide de simulations numériques puis appliquées sur des données expérimentales issues de l'imagerie sans lentille ou de la microscopie holographique en ligne (imagerie cohérente en transmission, avec un objectif de microscope). Les applications vont de la reconstruction de mires de résolution opaques à la reconstruction d'objets biologiques (bactéries), en passant par la reconstruction de gouttelettes d'éther en évaporation dans le cadre d'une étude de la turbulence en mécanique des fluides. / In Digital Imaging, the regularized inverse problems methods reconstruct particular information from measurements and an image formation model. With an inverse problem that is ill-posed and illconditioned, and with the used image formation mode! having few constraints, it is necessary to introduce a priori conditions in order to restrict ambiguity for the inversion. This allows us to guide the reconstruction towards a satisfying solution. The works of the following thesis delve into the development of reconstruction algorithms of digital holograms based on large-scale optimization methods (smooth and non-smooth). This general framework allowed us to propose different approaches adapted to the challenges found with this unconventional imaging technique: the super-resolution, reconstruction outside the sensor's field, the color holography and finally, the quantitative reconstruction of phase abjects (i.e. transparent). For this last case, the reconstruction problem consists of estimating the complex 2D transmittance of abjects having absorbed and/or dephased the light wave during the recording of the hologram. The proposed methods are validated with the help of numerical simulations that are then applied on experimental data taken from the lensless imaging or from the in-line holographie microscopy (coherent imaging in transmission, with a microscope abject glass). The applications range from the reconstruction of opaque resolution sights, to the reconstruction of biological objects (bacteria), passing through the reconstruction of evaporating ether droplets from a perspective of turbulence study in fluid mechanics.
|
Page generated in 0.1344 seconds