• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 14
  • 14
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impedance imaging using induced current

Purvis, W. R. January 1990 (has links)
No description available.
2

Image reconstruction in Electrical Impedance Tomography

Breckon, W. R. January 1990 (has links)
No description available.
3

Development of an electrical impedance tomograph for complex impedance imaging

Leung, Hing Tong Lucullus January 1991 (has links)
This project concerns the development of electrical impedance tomography towards the production of complex impedance images. The prime intention was to investigate the feasibility of developing suitable instrumentation; but not clinical applications. It was aimed to develop techniques for the performance evaluation of data collection systems. To achieve this it was necessary to design and develop a multi· current source type impedance tomography system, to act as a platform for the current study and for future work. The system developed is capable of producing conductivity and permittivity images. It employs microprocessor based data collection electronics, providing portability between a range of possible host computers. The development of the system included a study of constant amplitude current source circuits leading to the design and employment of a novel circuit. In order to aid system testing, a surface mount technology resistor-mesh test object was produced. This has been adopted by the EEC Concerted Action on Impedance Tomography (CAIT) programme as the first standard test object. A computer model of the phantom was produced using the industry standard ASTEC3 circuit simulation package. This development allows the theoretical performance of any system topology, at any level of detail, to be established. The imaging system has been used to produce images from test objects, as well as forearm and lung images on humans. Whilst the conductivity images produced were good, the permittivity in-vivo images were noisy, despite good permittivity images from test objects. A study of the relative merits of multiple and single stimulus type systems was carried out as a result of the discrepancies in the in-vivo and test object images. This study involved a comparison of the author's system with that of Griffiths at the University Hospital of Wales. The results showed that the multi current source type system, whilst able to reduce stray capacitance, creates other more significant errors due to circuit matching; future development in semiconductor device technology may help to overcome this difficulty. It was identified that contact impedances together with the effective capacitance between the measurement electrode pairs in four-electrode systems reduces the measurability of changes in phase. A number of benchmarking indices were developed and implemented, both for system characterisation and for practical/theoretical design comparisons.
4

Benefits and barriers of construction project monitoring using hi-resolution automated cameras

Bohn, Jeffrey S. 13 April 2009 (has links)
A more rapid and widespread use and implementation of technology in construction often fails since its benefits and limitations remain somewhat unclear. Project control is one of the most variable and time consuming task of construction project managers and superintendents, and yet continues to be mostly a manual task. Controlling tasks such as tracking and updating project schedules can be assisted through remotely operating technology such as hi-resolution cameras that can provide construction management and other users with imaging feeds of job site activities. Although construction cameras have been around for many years the costs, benefits, and barriers of their use have not been investigated nor quantified in detail. Subsequently, definitions and understanding vary widely, making it difficult for decision makers at the organizational level to decide on the investment in camera technology. This thesis reviews the status of hi-resolution cameras and their present use in construction. Results of a multi-phased survey to industry professionals were collected in order to identify benefits and barriers and develop a cost-benefit model that can be used for implementation technology in construction.
5

Impedance wire-mesh sensor for multiphase flows: contributions to an improved measurement accuracy

de Assis Dias, Felipe 06 February 2024 (has links)
Multiphase flows are simultaneous flows of two or more immiscible fluids in a pipe or vessel. Multiphase flows occur in a wide variety of industrial applications, such as chemical reactors, power generation, oil and gas production or transportation, etc. In most of these applications, efficiency and process reliability depend not insignificantly on the composition and flow morphology of these multiphase flows. Therefore, accurate determination of parameters such as phase fractions and their spatial distribution, as well as measurement of volumetric or mass flow rates, is essential to optimize and ensure correct operation of the equipment. For a better prediction of flow characteristics of multiphase systems, the development and validation of analytical models and CFD codes for simulations of multiphase flows has been promoted for some time in thermofluid dynamics research. For this purpose, the in-depth analysis of multiphase flows with high spatial and temporal resolution is essential. However, to date, there is no universal sensor that can directly measure all the required flow parameters over the full range of all flow conditions. Therefore, several strategies have been developed to solve this problem. For pure measurement of fluid composition and mixture volume flow, for example, the fluid mixture is often conditioned before measurement by separation into individual phases or by homogenization. However, this does not allow any more information about the flow morphology. In situations where the fluid cannot be preconditioned, for example when investigating bubble size distributions or predicting plug flows, imaging techniques such as wire-mesh sensors therefore play an important role because they provide cross-sectional images of the flow in rapid succession. This information can be used to determine phase distributions and identify flow regimes, which in turn can serve as input to other sensors to find optimal operating points. In addition, such information is important for validating models and numerical simulations. Although wire-mesh sensors are very attractive and now widely used due to their high spatial and temporal resolution, the measurement signals obtained from the sensor can be corrupted by energy losses and channel crosstalk under certain conditions. Therefore, a better understanding of the real physical conditions when using wire-mesh sensors is essential to improve the measurement accuracy and to extend the range of applications, e.g., for the measurement of media with very high conductivities or for an accurate quantification of individual phases in three-phase flows. In the present work, the current limitations of existing wire-mesh sensor systems are investigated in detail, thus providing a basis for technical improvements and the development of new methods for better interpretation of the measured values of wire-mesh sensors. For this purpose, the electronic measurement principle and the real sensor geometries are first investigated with respect to inherent energy losses and channel crosstalk. Based on mixing models, a method for visualization and quantification of three-phase gas-oil-water flows even in the presence of dispersions is presented. In addition, nonlinearities of wire-mesh sensors are predicted for the first time by a hybrid model based on the finite element method, which also incorporates the real parameters of the electronic components of signal generation and measurement. This model is subsequently used to generate synthetic data and to test new correction methods. Finally, two methods are proposed to compensate for unavoidable energy losses. The first method allows inherent determination of energy losses that cannot be suppressed by further circuit optimization. The second method allows determination of the voltage drop caused by the impedance of the electrodes when measured in highly conductive liquids. Numerical and experimental analyses show an improvement in the measurement accuracy of wire-mesh sensors with respect to the average and local phase fractions. The deviations of the average phase fraction were reduced from more than 15% to less than 2% and the deviations in local measurements from more than 30% to less than 5%.:Abstract 3 Zusammenfassung 5 Statement of authorship 9 Acronyms 13 Symbols 15 1. Introduction 17 2. State of the science and technology 21 3. Wire-mesh sensor and experimental test facilities 43 4. Three-phase flow measurement based on dual-modality wire-mesh sensor 53 5. Wire-mesh sensor model based on finite-element method and circuit simulation 67 6. Analysis of non-linear effects in measurements of wire-mesh sensor 79 7. Methods for improving the measurement accuracy of wire-mesh sensors 87 8. Conclusions and outlook 97 Bibliography 101 Appendices 111 A. List of scientific publications 113
6

ALTERNATIVE METHODOLOGIES FOR BORESIGHT CALIBRATION OF GNSS/INS-ASSISTED PUSH-BROOM HYPERSPECTRAL SCANNERS ON UAV PLATFORMS

Tian Zhou (6114419) 10 June 2019 (has links)
<p>Low-cost unmanned aerial vehicles (UAVs) utilizing push-broom hyperspectral scanners are poised to become a popular alternative to conventional remote sensing platforms such as manned aircraft and satellites. In order to employ this emerging technology in fields such as high-throughput phenotyping and precision agriculture, direct georeferencing of hyperspectral data using onboard integrated global navigation satellite systems (GNSS) and inertial navigation systems (INS) is required. Directly deriving the scanner position and orientation requires the spatial and rotational relationship between the coordinate systems of the GNSS/INS unit and hyperspectral scanner to be evaluated. The spatial offset (lever arm) between the scanner and GNSS/INS unit can be measured manually. However, the angular relationship (boresight angles) between the scanner and GNSS/INS coordinate systems, which is more critical for accurate generation of georeferenced products, is difficult to establish. This research presents three alternative calibration approaches to estimate the boresight angles relating hyperspectral push-broom scanner and GNSS/INS coordinate systems. For reliable/practical estimation of the boresight angles, the thesis starts with establishing the optimal/minimal flight and control/tie point configuration through a bias impact analysis starting from the point positioning equation. Then, an approximate calibration procedure utilizing tie points in overlapping scenes is presented after making some assumptions about the flight trajectory and topography of covered terrain. Next, two rigorous approaches are introduced – one using Ground Control Points (GCPs) and one using tie points. The approximate/rigorous approaches are based on enforcing the collinearity and coplanarity of the light rays connecting the perspective centers of the imaging scanner, object point, and the respective image points. To evaluate the accuracy of the proposed approaches, estimated boresight angles are used for ortho-rectification of six hyperspectral UAV datasets acquired over an agricultural field. Qualitative and quantitative evaluations of the results have shown significant improvement in the derived orthophotos to a level equivalent to the Ground Sampling Distance (GSD) of the used scanner (namely, 3-5 cm when flying at 60 m).</p>
7

The imaging technique as learning support for educationally disadvantaged learners in the secondary school, to improve reading comprehension

Ngwenya, Mandiza Dinah 01 October 2003 (has links)
Reading comprehension is one of the basic learning skills that need to be learned in an early school years. The English language is generally introduced as early as Grade 2 level in township primary schools. Township learners are at most exposed to English as the language of learning and teaching (LoLt) for three years (Grade 5-7) before entering secondary school. Most township primary school learners enter secondary school with poor English language development and poor language proficiency. Reading comprehension is one of the problems experienced by most township secondary school learners. Lack of reading comprehension skills negatively affect their ability to constuct meaning from what they are reading. Reading support techniques or strategies need to be sought and developed to address the reading comprehension problems experienced by learners especially from the disadvantaged enviroment. ind it difficult to understand or interpret what they are reading. This research focused on the use of the imaging technique on a learning suport in developing reading comprehension skills of township secondary school learners. The emphasis was mainly on how this technique can be adapted in order to enhance its mastery in developing reading comprehension skills. This imaging technique is seen as a feasible technique in a holistic approach to develop reading comprehension skills. The imaging technique makes use of the formation of multisensory pictures during the reading process which are valuable in the independent construction of meaning. The use of imaging for reading enhances active learning and memory. The research was conducted with learners in Grade 9 in a secondary school in a Pretoria township. The participants in the research group experienced reading comprehension problems, lack of English language development and difficulty in the use of English as the (LoLT). Some of the learners in the research group appeared to be experiencing intellectual learning disability. The practical implementation of the imaging technique was done in twenty sessions. A control group attended twenty reading support sessions using a dictionary method, for the same texts. Qualitative and quantitative analyses of the results are performed and discussed. / Thesis (MEd (Educational Psychology))--University of Pretoria, 2004. / Educational Psychology / unrestricted
8

Développement et applications de détecteurs gazeux à micro-pistes pour la tomographie muonique / Development and applications of micro-pattern gaseous detectors for muon tomography

Bouteille, Simon 11 September 2017 (has links)
Cette thèse décrit les premiers essais de tomographie muonique par absorption et par déviation en utilisant des détecteurs Micromegas à haute granularité. Cette technique d'imagerie utilisant les rayons cosmiques gratuits, sans dangers et disponibles partout a démontré sa capacité à imager des objets de tailles variées. Afin de construire des outils compacts, précis, et portables, utiliser une voie d'électronique pour lire chaque motif de lecture est impossible. Pour éviter ce problème, des détecteurs multiplexés ont été conçus, testés et mis en situation dans différentes conditions. Il a été tiré parti des dernières améliorations concernant le détecteur Micromegas telles que le multiplexage génétique ou la lecture 2D par pistes sous une couche résistive. Les prototypes qui ont été fabriqués ont atteint une résolution de 300µm sur une surface d'un quart de mètre carré en ne nécessitant que 61 voies d'électronique. Grâce à ces détecteurs, des campagnes de prise de données ont été faites, à la fois dans l'environnement semi-contrôlé du centre CEA de Saclay et sur le plateau de Gizeh en Egypte. Ces deux campagnes ont permis d'imager avec succès le château d'eau du CEA Saclay ainsi que la pyramide de Khéops et ce malgré les conditions extrêmes que les télescopes à muon ont endurées. Des variations de température de plusieurs dizaines de Kelvin ont été enregistrées alors que l'acquisition de données se déroulait de manière stable, c'est-à-dire que les variations du gain n'impactaient pas le système d'auto déclenchement. Cette stabilité a été rendue possible grâce à un ajustement des hautes tensions vis à vis des conditions environnementales. Cela constitue la première mondiale concernant le fonctionnement d'un dispositif de reconstruction de trace à base de Micromégas en extérieur. En parallèle des expériences de muographie par déviation ont été menées. Un dispositif imageant des objets de petite taille est capable de distinguer divers matériaux sur une échelle de temps de l'ordre d'une journée. Une plus grande installation a permis d'imager un conteneur entier. La résolution du problème inverse a été faite en utilisant à la fois l'algorithme simple dit du PoCA ainsi que celui de maximisation de vraisemblance proposé par Schultz et son équipe. / This thesis describes the first attempts to perform both absorption and scattering muon tomography using high granularity Micromegas detectors. This imaging technique using the free, available and harmless cosmic ray muons radiation shows great possibilities to study various sized objects. In order to make compact and precise portable devices, using one channel of electronics per readout pattern is not possible. To avoid this problem multiplexed detectors have been designed, extensively tested and used in numerous conditions. Latest developments in Micromegas design have been used such as the genetic multiplexing and the 2D strip readout using a resistive layer. The prototypes made were able to achieve a 300µm resolution at the scale of 50cm while using only 61 channels of electronics. Using these detectors, muography data taking campaigns have been performed both in the semi-controlled environment of the Saclay site of CEA and in the wild of the Giza plateau in Egypt. These two campaigns succeeded in imaging the CEA Saclay water tower and the Khufu's pyramid despite the extreme conditions endured by the Micromegas muon telescopes. Large temperature variations of a few tens of Kelvin have been recorded together with a stable operation i.e. an even gain ensuring a steady self triggering system. This stability was achieved using high voltage variations with respect to the environmental conditions. Together with this very first worldwide operation of a Micromegas-based tracker outside a laboratory, scattering muographies have also been done. A small setup imaging handheld objects performed well in separating various materials in time scales of the order of the day while a bigger 1m² setup allowing the scan of a full container was successfully operated. The inversion of the ill-posed problem of the muon scattering was performed using the crude PoCA method and the maximum likelihood one described by Schultz et al.
9

Implementation of 3D-Imaging technique for visual testing in a nuclear reactor pressure vessel / Tillämpning av 3D-avbildningsteknik för visuell provning i en reaktortank

Tanco, André January 2014 (has links)
This master thesis has been performed by request of Dekra Industrial AB. Dekra Industrial AB is a Swedish subsidiary company of the German company Dekra and works for example with safety inspections within the nuclear power industry. The inspections performed by the company are often non-destructive testing (NDT) such as visual inspections of nuclear reactor pressure vessels. The inspection methods used today are considered to be further developed and there is a strong demand of improving the visual inspection. 3D-Imaging techniques are starting to be used as a measuring tool within the industry and could be a potential aid tool for the visual inspection. The purpose with the master thesis is to gain an understanding of 3D-Imaging technique to propose a suitable implementation so that it may be used as an aid tool for visual inspection. The main goal with the master thesis work is to gain knowledge about 3D-Imaging techniques and propose an implementation which may be used in the nuclear power industry. However there are different types of techniques and all of them have advantages and disadvantages. The method began with a comprehensive study about 3D-Imaging techniques, optics of 3D-Imaging and behaviour of electronics in radioactive environment. Information that could not be acquired by literature alone is acquired by interviews and meetings. The chosen 3D-Imaging technique that was considered to be the most suitable was structural light. Structural light is built on a triangulation principle that uses a projector and a camera for acquiring 3D coordinates. By using patterns displayed by the projector onto the object the camera may detect the reflected patterns and thus creating 3D coordinates. A structural light system was built and tested. The main test consisted about a two-level factorial design. The tested factors were triangulation angle, brightness and measurement distance. The test run that had the largest triangulation angle, highest brightness and shortest measurement distance gave the best accuracy. The accuracy was determined by measuring the flatness of the object. The best accuracy was measured to 91.5 μm. Besides the accuracy the technique has proven its potential by being able to scan weld tests and reconstruct well defined point clouds of the weld profiles. In conclusion the goal of the master thesis was reached and the demanded accuracy was reached. The accuracy is comparable with some industrial systems available today. This was possible due to use of a high resolution still camera. Since the camera and projector are commercially available products the tests proves that there is room for further improvements in order to reach better and a more robust accuracy. Keywords: Dekra Industrial AB, Visual testing, Imaging technique, Structural light / Detta examensarbete har utförts på uppdrag av Dekra Industrial AB. Dekra Industrial AB är ett dotterbolag till Dekra. Dekra Industrial AB arbetar främst med kontroller och provningar inom industrin. Kärnkraftindustrin är en industrigren där DEKRA arbetar med sådan kontroll Inspektionerna som utförs består huvudsakligen av oförstörande provning såsom visuell provning. Metoderna som används idag behöver vidareutvecklas och det finns en stark efterfrågan att förbättra den visuella inspektionen. 3D-avbildningsteknik är allt vanligare inom industrin idag och skulle kunna användas som ett mäthjälpmedel för att komplettera den visuella inspektionen. Syftet med examensarbetet är att få en förståelse för hur väl tekniken fungerar samt att föreslå en tillämpning där den kan komma att användas som ett komplement till den visuella inspektionen. Målet med arbetet är att ta fram underlag och föreslå en tillämpning för provning i högstrålande miljö. 3D-avbildningsteknik är ett generellt namn för många olika typer av tekniker som har sina fördelar respektive nackdelar. Arbetet inleds med en litteraturstudie kring 3D-avbildningstekniker, fysik med avseende på avbildningsteknik, den visuella proceduren idag samt hur elektronik påverkas av högstrålande miljö. Information som inte kan fås via studier inhämtas via intervjuer och möten. Tekniken som valdes att analyseras var strukturerat ljus. Tekniken bygger på en trianguleringsprincip som använder en projektor och kamera för att tillförskaffa 3D-koordinater. Genom att projicera mönster på ett objekt kan kameran detektera det reflekterade mönstret och på så vis skapa 3D koordinater. Ett strukturerat ljus system ställdes upp och testades. Testet bestod huvudsakligen av en försöksplanering där de testade faktorerna var trianguleringsvinkel, ljusstyrka och mätavstånd. Testuppställningen som gav bäst resultat var med störst trianguleringsvinkel, högsta ljusstyrka samt kortast mätavstånd. Noggrannheten bestämdes genom att mäta planheten på objektet. Den bästa noggrannheten som uppnåddes med testet var 91.5 μm. Förutom den goda noggrannheten har tekniken visat sin potential genom att avbilda ett svetsprov som genererade ett väldefinierat punktmoln av svetsprofilen. Sammanfattningsvis uppfylldes målen och det uppställda systemet gav en noggrannhet som är jämförbar med en del system ute på marknaden. Detta var möjligt på grund av att en högupplöst stillbildskamera användes. Det finns potential för förbättringar då komponenterna som används i systemet är kommersiella produkter. Nyckelord: Dekra Industrial AB, Visuell inspektion, Avbildningsteknik, Strukturerat ljus
10

Early Detection of Dicamba and 2,4-D Herbicide Injuries on Soybean with LeafSpec, an Accurate Handheld Hyperspectral Leaf Scanner

Zhongzhong Niu (13133583) 22 July 2022 (has links)
<p>  </p> <p>Dicamba (3,6-dichloro-2-methoxybenzoic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are two widely used herbicides for broadleaf weed control in soybeans. However, off-target application of dicamba and 2,4-D can cause severe damage to sensitive vegetation and crops. Early detection and assessment of off-target damage caused by these herbicides are necessary to help plant diagnostic labs and state regulatory agencies collect more information of the on-site conditions so to develop solutions to resolve the issue in the future. In 2021, the study was conducted to detect damage to soybean leaves caused by dicamba and 2,4-D by using LeafSpec, an accurate handheld hyperspectral leaf scanner. . High resolution single leaf hyperspectral images of 180 soybean plants in the greenhouse exposed to nine different herbicide treatments were taken 1, 7, 14, 21 and 28 days after herbicide spraying. Pairwise PLS-DA models based on spectral features were able to distinguish leaf damage caused by two different modes of action herbicides, specifically dicamba and 2,4-D, as early as 2 hours after herbicide spraying. In the spatial distribution analysis, texture and morphological features were selected for separating the dosages of herbicide treatments. Compared to the mean spectrum method, new models built upon the spectrum, texture, and morphological features, improved the overall accuracy to over 70% for all evaluation dates. The combined features are able to classify the correct dosage of the right herbicide as early as 7 days after herbicide sprays. Overall, this work has demonstrated the potential of using spectral and spatial features of LeafSpec hyperspectral images for early and accurate detection of dicamba and 2,4-D damage in soybean plants.</p> <p>   </p>

Page generated in 0.0777 seconds