• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 78
  • 78
  • 78
  • 13
  • 11
  • 11
  • 11
  • 9
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Measurements in the bimodal region of a wing-body junction flow with a rapidly-scanning two-velocity-component laser-Doppler velocimeter

Shinpaugh, Kevin A. 06 June 2008 (has links)
The structure and behavior of the bimodal flow of the horseshoe vortex at the nose of a wing-body junction flow was studied. The wing consists of a 3:2 elliptic nose and a NACA 0020 tail joined at the maximum thickness (t). Measurements were performed with an approach flow conditions of U<sub>ref</sub> = 27.5 m/s, Re<sub>θ</sub> = 6700 at x/t=-2.15, and δ/t=0.5. A rapidly-scanning two-velocity-component laser-Doppler anemometer system was developed for use in investigating this flow. U and V velocity components were measured simultaneously with surface pressure measurements at the location of the most bimodal pressure histogram (x/t=-0.26). Mean (U, V) and rms (u’, v’) velocity components were obtained at four x locations, x/t= -0.15, -0.20, -0.25, -0.30, and show the same flow features measured in previous studies at this facility. Cross-correlations between the velocity and the surface pressure fluctuations were obtained. Large correlations were found between the u fluctuations (x/t= -0.15, -0.25, and -0.30) near the wall, y/t < 0.05, and the surface pressure fluctuations. The z fluctuations for y/t > 0.1 at all four x-locations lead the surface pressure fluctuations. Space-time correlations between the velocity fluctuations near the wall with the velocity fluctuations along the scan were also obtained. The correlations at x/t=-0.25 and x/t=-0.30 show that the fluctuations in the outer region, y/t > 0.1, are significantly correlated with and lead the velocity fluctuations near the wall. These measurements support a model of a single primary junction vortex that changes size and location in front of the wing. The strength or circulation of this vortex varies by only 20%. Event-threshold conditional-averages of velocity were obtained based on the surface pressure signal, which is sensitive to the movement of the junction vortex. These show that the junction vortex is concentrated near the nose, with large backflow, when the surface pressure signal is above the mean. The junction vortex is larger, with smaller backflow near the nose, when the surface pressure signal is below the mean. The velocity-pressure cross-correlations and space-time correlations indicate that the behavior of the junction vortex is influenced by fluctuations originating upstream and propagating inward and downward toward the wing. / Ph. D.
72

Laser Doppler velocimeter measurements in a turbulent junction vortex

Tree, Iho K. January 1986 (has links)
An experimental investigation of an incompressible, turbulent junction vortex formed at the base of a streamlined cylinder with a circular leading edge placed normal to a flat surface is documented. The flow environment is characterized by a body Reynolds number of 183,000, based on the diameter of the model. The investigation centered around measurements of mean velocity vectors at over 1,700 locations on the plane of symmetry. In addition, extensive turbulence measurements in regions of interest on the plane of symmetry were also made. All of the measurements are performed with a two-color, two-component, frequency shifted laser Doppler velocimeter. The mean flow field shows the presence of a single vortex on the plane of symmetry and a singular separation point upstream of the vortex. From the measured data, the locations of the vortex center and the singular separation point were determined. The mean velocity field correlates well with previously published surface pressure data and surface flow visualization results. Extensive comparisons were made with earlier Conrad and five-hole pressure probe measurements and hot film measurements. Comparisons with the Conrad probe results were made in a two-dimensional turbulent boundary layer, and with the five-hole probe results for the plane of symmetry junction vortex flow at six stations in the upstream region and four stations inside the separated region. Hot film results were compared at two stations in the upstream region. Excellent agreement was found in the two-dimensional turbulent boundary layer. On the plane of symmetry junction vortex flow, agreement among the three instruments was good, especially for data taken in the upstream region and away from the floor. Turbulence data were also obtained with the laser Doppler velocimeter in conjunction with a minicomputer. Results indicate the turbulence level inside the separated region is significantly higher than in the upstream region. Highest levels of turbulence were found near the singular separation point and near the center of the vortex. Doppler spectra variations in these regions were also shown. In addition, Doppler histograms obtained by a PDP-11 minicomputer were compared to Doppler spectra obtained using an FFT. Excellent agreement was found between the Doppler spectra and the histograms obtained from the two different instruments. / Ph. D.
73

Examination of flow around second-generation controlled diffusion compressor blades in cascade at stall

Fitzgerald, Kevin D. 06 1900 (has links)
Approved for public release, distribution is unlimited / The flow around second-generation controlled-diffusion blades in cascade at stall was examined experimentally through the use of a two-component laser-Doppler velocimeter. Blade surface pressure measurements were also preformed at mid span on the blades at various Reynolds numbers. Flow visualization techniques were used to observe and record the flow on the surface of the blade. A correlation between the experimental results and computational fluid dynamic predictions was attempted in order to determine the exact nature of the flow as the blades approached stall, to further assist in the development of advanced blade design. The blade surface pressure measurements showed that the mid-span section of the blade was at a lower loading than previously measured at a smaller inlet flow angle. This indicated that the blade section was at stall. The flow visualization highlighted the extent of the three-dimensional flow over the blades. The LDV measurements documented the mid-span boundary layer and wake profiles. / Ensign, United States Navy
74

Sturcture of Three-Dimensional Separated Flow on Symmetric Bumps

Byun, Gwibo 14 November 2005 (has links)
Surface mean pressures, oil flow visualization, and 3-velocity-component laser-Doppler velocimeter measurements are presented for a turbulent boundary layer of momentum thickness Reynolds number, 7300 and thickness delta over two circular based axisymmetric bumps of height H = delta and 2delta and one rectangular based symmetric bump of H = 2delta. LDV data were obtained at one plane x/H ¥ 3.26 for each case. Complex vortical separations occur on the leeside and merge into large stream-wise mean vortices downstream for the 2 axisymmetric cases. The near-wall flow (y+ < 90) is dominated by the wall. For the axisymmetric cases, the vortices in the outer region produce large turbulence levels near the centerline and appear to have low frequency motions that contribute to turbulent diffusion. For the case with a narrower span-wise shape, there are sharper separation lines and lower turbulence intensities in the vortical downstream flow. Fine-spatial-resolution LDV measurements were also obtained on half of the leeside of an axisymmetric bump (H/delta = 2) in a turbulent boundary layer. Three-dimensional (3-D) separations occur on the leeside with one saddle separation on the centerline that is connected by a separation line to one focus separation on each side of the centerline. Downstream of the saddle point the mean backflow converges to the focal separation points in a thin region confined within about 0.15delta from the local bump surface. The mean backflow zone is supplied by the intermittent large eddies as well as by the near surface flow from the side of the bump. The separated flow has a higher turbulent kinetic energy and shows bimodal histograms in local and U and W, which appear to be due to highly unsteady turbulent motions. By the mode-averaged analysis of bimodal histograms, highly unsteady flow structures are estimated and unsteady 3-D separations seem to be occurring over a wide region on the bump leeside. The process of these separations has very complex dynamics having a large intermittent attached and detached flow region which is varying in time. These bimodal features with highly correlated local u and w fluctuating motions are the major source of large Reynolds stresses local u2, w2 and -uw. Because of the variation of the mean flow angle in the separation zones, the turbulent flow from different directions is non-correlated, resulting in lower shearing stresses. Farther from the wall, large stream-wise vortices form from flow around the sides of the bump. / Ph. D.
75

Near Wall Behavior of Vortical Flow around the Tip of an Axial Pump Rotor Blade

Tian, Qing 08 January 2007 (has links)
This dissertation presents the results from an experimental study of three-dimensional turbulent tip gap flow in a linear cascade wind tunnel with 3.3% chord tip clearance with and without moving endwall simulation. Experimental measurements have been completed in Virginia Tech low speed linear cascade wind tunnel. A 24" access laser-Doppler velocimeter (LDV) system was developed to make simultaneous three-velocity-component measurements. The overall size of the probe is 24"à 37"à 24"and measurement spatial resolution is about 100 μm. With 24" optical access distance, the LDV probe allows measurements to be taken from the side of the linear cascade tunnel instead of through the bottom of the tunnel floor. The probe has been tested in a zero-pressure gradient two-dimensional turbulent boundary layer. Experimental measurements (oil flow visualization, pressure measurement, and LDV measurement) for the stationary wall captured the major flow structures of the tip leakage flow in the linear compressor cascade, such as tip leakage vortex, tip leakage vortex separation and tip separation vortex. Large velocity gradients in the tip leakage vortex separation, tip leakage vortex, and tip separation vortex regions generate large production of the Reynolds stresses and turbulent kinetic energy. One of the most interesting features of the tip leakage flow is the bimodal velocity probability histograms of the v component due to the unsteady motion of the flow in the interaction region between the tip leakage vortex and tip leakage jet. The tip separation vortex, tip leakage vortex separation, and tip leakage vortex contain most of turbulent kinetic energy and generate the highest dissipation rate. Relative motion of the endwall significantly affects the tip gap flow structures, especially in the near wall region. Compared to the stationary wall case, velocity gradients in the near wall region for the moving wall case are much smaller and lower velocity gradients in the near wall region cause the low production of Reynolds stresses and turbulent kinetic energy. Similar to the stationary wall case, high Reynolds stresses and turbulent kinetic energy values are mainly located in the vicinity of the tip leakage vortex and tip separation vortex region. The bimodal velocity probability histograms of the v component are also found at the same locations. The tip separation vortex with most of the turbulent kinetic energy generates the highest dissipation rate. The dissipation rate in the tip leakage vortex region is reduced with the decrease of turbulent kinetic energy under the moving wall effect. / Ph. D.
76

Autonomous structural health monitoring technique for interplanetary drilling applications using laser doppler velocimeters

Statham, Shannon M. 18 January 2011 (has links)
With the goal to continue interplanetary exploration and search for past or existent life on Mars, software and hardware for unmanned subsurface drills are being developed. Unlike drilling on Earth, interplanetary exploration drills operate with very low available power and require on-board integrated health monitoring systems, with quick-response recovery procedures, under complete autonomous operations. As many drilling faults are not known a priori, Earth-based direction and control of an unmanned interplanetary drilling operation is not practical. Such missions also require advanced robotic systems that are more susceptible to structural and mechanical failures, which motivates a need for structural health monitoring techniques relevant to interplanetary exploration systems. Structural health monitoring (SHM) is a process of detecting damage or other types of defects in structural and mechanical systems that have the potential to adversely affect the current or future performance of these systems. Strict requirements for interplanetary drilling missions create unique research problems and challenges compared with SHM procedures and techniques developed to date. These challenges include implementing sensors and devices that do not interfere with the drilling operation, producing "real-time" diagnostics of the drilling condition, and developing an automation procedure for complete autonomous operations. Thus, the completed thesis work presents basic research leading to the dynamic analysis of rotating structures with specific application to interplanetary subsurface drill systems, and the formulation of an autonomous, real-time, dynamics-based SHM technique for drilling applications. This includes modeling and validating the structural dynamic system, with and without damage or faults, for a prototype interplanetary subsurface drill, exploring the use of Laser Doppler Velocimeter sensors for use in real-time SHM, developing signal filters to remove inherent harmonic components from the dynamic signal of rotating structures, developing an automation procedure with the associated software, and validating the SHM system through laboratory experiments and field tests. The automated dynamics-based structural health monitoring technique developed in this thesis presents advanced research accomplishments leading to real-time, autonomous SHM, and it has been validated on an operating dynamic system in laboratory and field tests. The formulated SHM and drilling operation also met or exceeded all specified requirements. Other major contributions of this thesis work include the formulation and demonstration of real-time, autonomous SHM in rotating structures using Laser Doppler Velocimeter sensors.
77

Development of a Doppler Global Velocimetry system in view of turbomachinery applications

Bagnera, Carlo 28 March 2008 (has links)
The development of a Doppler Global Veocimetry (DGV) system is described. An argon ion laser has been modified to suit the requirements of DGV. An etalon with high precision tilting control has been mounted in the laser cavity. The backward mirror of the laser cavity has been mounted on a piezotranslator for controlling the laser cavity length. Two iodine cells have been designed and manufactured: one with a bead of iodine in the cell volume, the other with a limited amount of iodine. The iodine absorption line of both cells has been calibrated with good repeatibility. The laser has been stabilized in frequency, so that operations during a measurement session in the lab are simplified. The capabilities of DGV measurements have been tested in two jets, at low and at high speeds. Velocity fluctuations of the jet could be followed, in spite of the highly noisy signals. The first steps towards three velocity component measurements with a single camera in a difficult environment such as the geometry of a turbomchinery cascade have been made. Imaging two views of a target on the same camera sensor is discussed, along with the spatial and luminosity calibration required. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
78

Investigation and development of oil-injection nozzles for high-cycle fatigue rotor spin test

Moreno, Oscar Ray 03 1900 (has links)
Approved for public release, distribution is unlimited / Resonant excitation tests of rotor blades in vacuum spin pits using discrete oil jets showed that impact erosion of the blades could limit test times, but lower excitation amplitudes were produced using mist nozzles. Smaller diameter discrete jets might extend test times, but to fully prevent erosion, oil mist droplet size needed to be 30 microns or less. The present study examined both approaches. Prototype nozzles were developed to create 0.005 inch diameter multiple discrete jets using first alumina, then stainless steel tubing, laser and micro-machine drilling. The latter technique was selected and 50 were manufactured for evaluation in HCF spin tests. A vacuum test chamber was built to observe and photograph spray patterns from the prototype nozzles and from commercially available mist nozzles. An LDV system was used successfully to determine the velocity of the oil droplets within the mist. A complete mapping of mist nozzle sprays is required to allow routine design of blade excitation systems. / Lieutenant, United States Navy

Page generated in 0.0748 seconds