• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amélioration de la localisation 3D de données laser terrestre à l'aide de cartes 2D ou modèles 3D / Improved 3D localization of mobile mapping vehicles using 2D maps or 3D models

Monnier, Fabrice 19 December 2014 (has links)
Les avancées technologiques dans le domaine informatique (logiciel et matériel) et, en particulier, de la géolocalisation ont permis la démocratisation des modèles numériques. L'arrivée depuis quelques années de véhicules de cartographie mobile a ouvert l'accès à la numérisation 3D mobile terrestre. L'un des avantages de ces nouvelles méthodes d'imagerie de l'environnement urbain est la capacité potentielle de ces systèmes à améliorer les bases de données existantes 2D comme 3D, en particulier leur niveau de détail et la diversité des objets représentés. Les bases de données géographiques sont constituées d'un ensemble de primitives géométriques (généralement des lignes en 2D et des plans ou des triangles en 3D) d'un niveau de détail grossier mais ont l'avantage d'être disponibles sur de vastes zones géographiques. Elles sont issues de la fusion d'informations diverses (anciennes campagnes réalisées manuellement, conception automatisée ou encore hybride) et peuvent donc présenter des erreurs de fabrication. Les systèmes de numérisation mobiles, eux, peuvent acquérir, entre autres, des nuages de points laser. Ces nuages laser garantissent des données d'un niveau de détail très fin pouvant aller jusqu'à plusieurs points au centimètre carré. Acquérir des nuages de points laser présente toutefois des inconvénients :- une quantité de données importante sur de faibles étendues géographiques posant des problèmes de stockage et de traitements pouvant aller jusqu'à plusieurs Téraoctet lors de campagnes d'acquisition importantes- des difficultés d'acquisition inhérentes au fait d'imager l'environnement depuis le sol. Les systèmes de numérisation mobiles présentent eux aussi des limites : en milieu urbain, le signal GPS nécessaire au bon géoréférencement des données peut être perturbé par les multi-trajets voire même stoppé lors de phénomènes de masquage GPS liés à la réduction de la portion de ciel visible pour capter assez de satellites pour en déduire une position spatiale. Améliorer les bases de données existantes grâce aux données acquises par un véhicule de numérisation mobile nécessite une mise en cohérence des deux ensembles. L'objectif principal de ce manuscrit est donc de mettre en place une chaîne de traitements automatique permettant de recaler bases de données géographiques et nuages de points laser terrestre (provenant de véhicules de cartographies mobiles) de la manière la plus fiable possible. Le recalage peut se réaliser de manière différentes. Dans ce manuscrit, nous avons développé une méthode permettant de recaler des nuages laser sur des bases de données, notamment, par la définition d'un modèle de dérive particulièrement adapté aux dérives non-linéaires de ces données mobiles. Nous avons également développé une méthode capable d'utiliser de l'information sémantique pour recaler des bases de données sur des nuages laser mobiles. Les différentes optimisations effectuées sur notre approche nous permettent de recaler des données rapidement pour une approche post-traitements, ce qui permet d'ouvrir l'approche à la gestion de grands volumes de données (milliards de points laser et milliers de primitives géométriques).Le problème du recalage conjoint a été abordé. Notre chaîne de traitements a été testée sur des données simulées et des données réelles provenant de différentes missions effectuées par l'IGN / Technological advances in computer science (software and hardware) and particularly, GPS localization made digital models accessible to all people. In recent years, mobile mapping systems has enabled large scale mobile 3D scanning. One advantage of this technology for the urban environment is the potential ability to improve existing 2D or 3D database, especially their level of detail and variety of represented objects. Geographic database consist of a set of geometric primitives (generally 2D lines and plans or triangles in 3D) with a coarse level of detail but with the advantage of being available over wide geographical areas. They come from the fusion of various information (old campaigns performed manually, automated or hybrid design) wich may lead to manufacturing errors. The mobile mapping systems can acquire laser point clouds. These point clouds guarantee a fine level of detail up to more than one points per square centimeter. But there are some disavantages :- a large amount of data on small geographic areas that may cause problems for storage and treatment of up to several Terabyte during major acquisition,- the inherent acquisition difficulties to image the environment from the ground. In urban areas, the GPS signal required for proper georeferencing data can be disturbed by multipath or even stopped when GPS masking phenomena related to the reduction of the portion of the visible sky to capture enough satellites to find a good localization. Improve existing databases through these dataset acquired by a mobile mapping system requires alignment of these two sets. The main objective of this manuscript is to establish a pipeline of automatic processes to register these datasets together in the most reliable manner. Co-registration this data can be done in different ways. In this manuscript we have focused our work on the registration of mobile laser point cloud on geographical database by using a drift model suitable for the non rigid drift of these kind of mobile data. We have also developped a method to register geographical database containing semantics on mobile point cloud. The different optimization step performed on our methods allows to register the data fast enough for post-processing pipeline, which allows the management of large volumes of data (billions of laser points and thousands geometric primitives). We have also discussed on the problem of joint deformation. Our methods have been tested on simulated data and real data from different mission performed by IGN

Page generated in 0.0548 seconds