• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 2
  • 2
  • Tagged with
  • 33
  • 33
  • 9
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

SCALABLE LASER ASSISTED MANUFACTURING TECHNIQUES FOR LOW-COST MULTI-FUNCTIONAL PASSIVE WIRELESS CHIPLESS SENSORS.pdf

Sarath Gopalakrishnan (15300904) 13 June 2023 (has links)
<p>Passive chipless wireless sensors have gained great attention in Radio Frequency Identification (RFID) applications, inventory tracking, and structural health monitoring, as they offer a prospective low-cost, scalable alternative to the state-of-the-art active sensors. While the popularity and demand for chipless sensors are on the rise, their applications are limited to low-noise environments and their caliber as low-cost, scalable devices has not been explored to a successful degree in challenging domains, such as precision agriculture, healthcare, and food packaging. Size, cost of materials, and complexity of the manufacturing process are the main obstacles to progress in the large-scale production of chipless sensors for practical applications. </p> <p><br></p> <p>Conventional manufacturing processes, such as photolithography, are costly, cumbersome, and time intensive. While additive manufacturing techniques, such as printing technologies, have circumvented some of these challenges, printing techniques require costly inks and complex post-processing steps, such as drying and sintering, which limit their large-scale utilization. To overcome these challenges, this dissertation focuses on investigating the possibility of utilizing laser processing of conventional metalized films and polymers to develop cost-effective chipless sensors. This Scalable Laser Assisted Manufacturing (SLAM) process offers a platform for large-scale roll-to-roll production of high-resolution sensors for precision agriculture, healthcare, and food packaging applications. </p> <p><br></p> <p>In this pursuit, the first study explores combining the SLAM process with 3D printing to develop a miniaturized, biodegradable, chipless sensor for soil moisture monitoring. In the second study, the SLAM process is further explored in the development of metalized stickers for healthcare applications focusing on urine bag management and early risk detection of urinary tract infections. In the third study, the capability of the SLAM process to form moisture-sensitive metal nanoparticles as a co-product of metal patterning is harnessed to develop a chipless humidity sensor. The SLAM process is further expanded in the fourth study by functionalizing metalized films with stimuli-responsive polymers to achieve specificity in detecting unique biomarkers of food spoilage. The SLAM platform described in this work opens up new avenues toward processing metalized fabric for the future of wearable electronics and implementing multi-functional sensors for precision agriculture.</p> <p>  </p>
32

Non-Isothermal Laser Treatment of Fe-Si-B Metallic Glass

Joshi, Sameehan Shrikant 12 1900 (has links)
Metallic glasses possess attractive properties, such as high strength, good corrosion resistance, and superior soft magnetic performance. They also serve as precursors for synthesizing nanocrystalline materials. In addition, a new class of composites having crystalline phases embedded in amorphous matrix is evolving based on selective crystallization of metallic glasses. Therefore, crystallization of metallic glasses and its effects on properties has been a subject of interest. Previous investigations from our research group related to laser assisted crystallization of Fe-Si-B metallic glass (an excellent soft magnetic material by itself) showed a further improvement in soft magnetic performance. However, a fundamental understanding of crystallization and mechanical performance of laser treated metallic glass was essential from application point of view. In light of this, the current work employed an integrated experimental and computational approach to understand crystallization and its effects on tensile behavior of laser treated Fe-Si-B metallic glass. The time temperature cycles during laser treatments were predicted using a finite element thermal model. Structural changes in laser treated Fe-Si-B metallic glass including crystallization and phase evolution were investigated with the aid of X-ray diffraction, differential scanning calorimetry, resistivity measurements, and transmission electron microscopy. The mechanical behavior was evaluated by uniaxial tensile tests with an InstronTM universal testing machine. Fracture surfaces of the metallic glass were observed using scanning electron microscopy and site specific transmission electron microscopy. Fe-Si-B metallic glass samples treated with lower laser fluence (<0.49 J/mm2) underwent structural relaxation while higher laser flounces led to partial crystallization. The crystallization temperature experienced an upward shift due to rapid heating rates of the order of 104 K/s during laser treatments. The heating cycle was followed by termination of laser upon treatment attainment of peak temperature and rapid cooling of the similar order. Such dynamic effects resulted in premature arrest of the crystallite growth leading to formation of fine crystallites/grain (~32 nm) of α-(Fe,Si) as the major component and Fe2B as the minor component. The structural relaxation, crystallization fractions of 5.6–8.6 Vol% with α-(Fe,Si) as the main component, and crystallite/grain size of the order of 12 nm obtained in laser fluence range of 0.39-0.49 J/mm2 had minimal/no influence on tensile behavior of the laser treated Fe-Si-B metallic glass foils. An increase in laser fluence led to progressive increase in crystallization fractions with considerable amounts of Fe2B (2-6 Vol%) and increase in grain size to ~30 nm. Such a microstructural evolution severely reduced the strength of Fe-Si-B metallic glass. Moreover, there was a transition in fracture surface morphology of laser treated Fe-Si-B metallic glass from vein pattern to chevron pattern. Tensile loading lacked any marked influence on the crystallization behavior of as-cast and structurally relaxed laser-treated metallic glass foils. However, a significant crystallite/grain growth/coarsening of the order of two and half times was observed in the fractured region compared to the region around it for the laser-treated partially crystallized metallic glass foils. The simultaneous effects of stress generation and temperature rise during tensile loading were considered to play a key role in crystallite/grain growth/coarsening.
33

Percolated Si:SiO2 Nanocomposite: Oven- vs. Laser-Induced Crystallization of SiOx Thin Films

Schumann, Erik 24 May 2022 (has links)
Silizium basierende Technologie bestimmt den technologischen Fortschritt in der Welt und ist weiterhin ein Material für die weitere Entwicklung von Schlüsseltechnologien. Die Änderung der Silizium-Materialeigenschaft der optischen und elektronische Bandlücke durch die Reduktion der Materialdimension auf die Nanometerskala ist dabei von besonders großem Interesse. Die meisten Silizium-Nanomaterialien bestehen aus Punkt-, Kugel- oder Drahtformen. Ein relativ neues Materialsystem sind dreidimensionale, durchdringende, Nano-Komposit Netzwerke aus Silizium in einer Siliziumdioxid Matrix. Die vorliegende Arbeit untersucht die Entstehung von dreidimensionalen Silizium-Nanokomposit-Netzwerken durch Abscheidung eines siliziumreichen Siliziumoxids(SiOx, mit x<2) und anschlieÿender thermischen Behandlung. Hierbei wurden die reaktive Ionenstrahl-Sputterabscheidung (IBSD), sowie das reaktive Magnetronsputtern (RMS) verglichen. Auch wurden die Unterschiede zwischen klassischer Ofen und Millisekunden-Linienlaser Behandlung untersucht. Abgeschiedene und thermisch behandelte Dünnschichten wurden hinsichtlich der integralen Zusammensetzung, Homogenität, Morphologie und Struktur mittels Rutherford-Rückstreuspektroskopie, Ramanspektroskopie, Röntgenbeugung, spektroskopische Ellipsometrie, Photospektrometrie und (Energie gefilterter) Transmissionselektronenmikroskopie untersucht. Abhängig von der Abscheidemethode und des thermischen Ausheilprozesses wurden unterschiedliche Strukturgrößen und Kristallisationsgrade erzeugt. Insbesondere wurde gezeigt, dass während der 13 ms langen Laserbearbeitung (Ofen: 90 min) wesentlich größere Strukturen (laser:~50 nm; oven:~10 nm) mit einer deutlich höheren Kristallinität (laser:~92-99%; oven:~35-80%) entstehen. Darüber hinaus erhält sich die abscheidebedingte Morphologie nach der Ofenbehandlung, verschwindet jedoch nach der Laserprozessierung. Erklärt wurde dies mit einem Prozess über die flüssige Phase während der Laserbearbeitung, im Gegensatz zu einem Festphasenprozess bei der Ofenbehandlung. Abschließend wurde gezeigt, dass absichtlich eingebrachte vertikale und horizontale Schwankungen der Zusammensetzung genutzt werden können, um definierte Silizium Nanonetzwerke mit einer dreidimensionalen quadratischen Netzstruktur herzustellen.:1 Introduction 2 Fundamentals 2.1 The silicon - silicon oxide system 2.1.1 The Si-O phase diagram 2.1.2 Chemical reaction consideration 2.2 Phase separation of binary systems 2.2.1 Phase separation regimes 2.2.2 Diffusion in solids 2.3 Different types of silicon nanostructures 2.3.1 0D - Silicon nanoparticles 2.3.2 1D - Silicon nanowires 2.3.3 3D - Silicon nanonetworks 3 Experimental methods 3.1 SiOx thin film deposition 3.1.1 SiOx thin films by ion beam sputter deposition 3.1.2 SiOx thin films by reactive magnetron sputter deposition 3.1.3 Comparison of ion beam and magnetron sputter deposition 3.2 Thermal processing of as-deposited SiOx thin films 3.2.1 Oven treatment 3.2.2 Laser treatment 3.3 Thin-film characterization 3.3.1 Rutherford backscattering 3.3.2 Spectroscopic ellipsometry and photospectrometry 3.3.3 Raman spectroscopy 3.3.4 X-ray diffraction 3.3.5 Transmission electron microscopy 4 Results 4.1 Accessible SiOx compositions as a function of deposition and annealing method 4.2 Structure and properties of ion beam sputter deposited SiOx thin films before and after thermal processing 4.2.1 Phase- and microstructure of SiO0:6 thin films deposited by ion beam sputter deposition at 450°C 4.2.2 Phase- and microstructure of SiO0.6 thin films deposited by ion beam sputter deposition at room temperature 4.3 Structure and properties of reactive magnetron sputter deposited SiOx thin films before and after thermal processing 4.4 Multilayer SiOx films for the generation of defined squared mesh structures 5 Discussion 5.1 Compositional homogeneity of SiO0:6 thin films before and after thermal treatment 5.2 Phase structure of as-deposited SiOx thin films 5.3 Influence of the thermal treatment on the structural properties of percolated Si:SiO2 nanostructures 5.3.1 Observed structural properties 5.3.2 Origin of different structure sizes - liquid vs. solid state crystallization 5.4 Influence of the deposition temperature during ion beam sputtering on the structural properties of percolated Si:SiO2 nanostructures before and after thermal processing 5.5 Influence of the deposition method on the structural properties of percolated Si:SiO2 nanostructures 5.6 Formation of interface layers and electrical characterization 6 Summary and outlook 6.1 Summary 6.2 Outlook A EFTEM imaging / Silicon-based technology determines the technological progress in the world significantly and is still a material of choice for further development of key technologies. In particular the reduction of silicon structure sizes to a nanometer scale are of great interest. Most silicon nano structures are based on spherical, dot-like or cylindrical, wire-like geometries. A relatively new material system are three dimensional percolated nanocomposite networks of silicon within a silica matrix. To form any of these nano structures fast, room temperature processes are desired which also offer the possibility of structure modification by different process management. The present work studies the formation of three-dimensional silicon nanocomposite networks by the deposition of a silicon rich silicon oxide (SiO x , with x < 2) and subsequent thermal treatment. Thereby, reactive ion beam sputter deposition (IBSD) as well as reactive magnetron sputtering (RMS) was compared. As well, the differences between a conventional oven and a millisecond line-focused diode laser were studied. As-deposited and thermally treated thin films were characterized with regard to the overall mean composition, homogeneity, morphology and structure by Rutherford backscattering, Raman spectroscopy, X-ray diffraction, spectroscopic ellipsometry, photospectrometry as well as cross-sectional and energy-filtered transmission electron microscopy. Depending on the deposition method as well as the thermal treatment process different structure sizes and degrees of crystallization were achieved. Most notably it was found, that during 13 ms laser processing (oven: min. 90 min), much bigger structures (laser: ≈ 50 nm; oven: ≈ 10 nm) with a notably higher degree of crystallization (laser: ≈ 92-99%; oven: ≈ 35-80%) evolve. Moreover, the structure morphology after deposition is preserved during oven treatment but diminishes following laser processing. This was explained by a process via the liquid phase for laser processing in contrast to a solid state process during oven treatment. Finally it was shown, that intentional introduced vertical and horizontal composition fluctuations can be used to form well-defined silicon nano-networks with a three dimensional square mesh structure.:1 Introduction 2 Fundamentals 2.1 The silicon - silicon oxide system 2.1.1 The Si-O phase diagram 2.1.2 Chemical reaction consideration 2.2 Phase separation of binary systems 2.2.1 Phase separation regimes 2.2.2 Diffusion in solids 2.3 Different types of silicon nanostructures 2.3.1 0D - Silicon nanoparticles 2.3.2 1D - Silicon nanowires 2.3.3 3D - Silicon nanonetworks 3 Experimental methods 3.1 SiOx thin film deposition 3.1.1 SiOx thin films by ion beam sputter deposition 3.1.2 SiOx thin films by reactive magnetron sputter deposition 3.1.3 Comparison of ion beam and magnetron sputter deposition 3.2 Thermal processing of as-deposited SiOx thin films 3.2.1 Oven treatment 3.2.2 Laser treatment 3.3 Thin-film characterization 3.3.1 Rutherford backscattering 3.3.2 Spectroscopic ellipsometry and photospectrometry 3.3.3 Raman spectroscopy 3.3.4 X-ray diffraction 3.3.5 Transmission electron microscopy 4 Results 4.1 Accessible SiOx compositions as a function of deposition and annealing method 4.2 Structure and properties of ion beam sputter deposited SiOx thin films before and after thermal processing 4.2.1 Phase- and microstructure of SiO0:6 thin films deposited by ion beam sputter deposition at 450°C 4.2.2 Phase- and microstructure of SiO0.6 thin films deposited by ion beam sputter deposition at room temperature 4.3 Structure and properties of reactive magnetron sputter deposited SiOx thin films before and after thermal processing 4.4 Multilayer SiOx films for the generation of defined squared mesh structures 5 Discussion 5.1 Compositional homogeneity of SiO0:6 thin films before and after thermal treatment 5.2 Phase structure of as-deposited SiOx thin films 5.3 Influence of the thermal treatment on the structural properties of percolated Si:SiO2 nanostructures 5.3.1 Observed structural properties 5.3.2 Origin of different structure sizes - liquid vs. solid state crystallization 5.4 Influence of the deposition temperature during ion beam sputtering on the structural properties of percolated Si:SiO2 nanostructures before and after thermal processing 5.5 Influence of the deposition method on the structural properties of percolated Si:SiO2 nanostructures 5.6 Formation of interface layers and electrical characterization 6 Summary and outlook 6.1 Summary 6.2 Outlook A EFTEM imaging

Page generated in 0.0535 seconds