• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 14
  • 10
  • 9
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 284
  • 284
  • 54
  • 48
  • 37
  • 35
  • 34
  • 25
  • 24
  • 23
  • 23
  • 23
  • 22
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Intracavity Laser Absorption Spectroscopy Using Quantum Cascade Laser And Fabry-perot Interferometer

Medhi, Gautam 01 January 2011 (has links)
Intracavity Laser Absorption Spectroscopy (ICLAS) at IR wavelengths offers an opportunity for spectral sensing of low vapor pressure compounds. We report here an ICLAS system design based on a quantum cascade laser (QCL) at THz (69.9 m) and IR wavelengths (9.38 and 8.1 m) with an open external cavity. The sensitivity of such a system is potentially very high due to extraordinarily long effective optical paths that can be achieved in an active cavity. Sensitivity estimation by numerical solution of the laser rate equations for the THz QCL ICLAS system is determined. Experimental development of the external cavity QCL is demonstrated for the two IR wavelengths, as supported by appearance of fine mode structure in the laser spectrum. The 8.1 m wavelength exhibits a dramatic change in the output spectrum caused by the weak intracavity absorption of acetone. Numerical solution of the laser rate equations yields a sensitivity estimation of acetone partial pressure of 165 mTorr corresponding to ~ 200 ppm. The system is also found sensitive to the humidity in the laboratory air with an absorption coefficient of just 3 x 10-7 cm -1 indicating a sensitivity of 111 ppm. Reported also is the design of a compact integrated data acquisition and control system. Potential applications include military and commercial sensing for threat compounds such as explosives, chemical gases, biological aerosols, drugs, banned or invasive organisms, bio-medical breath analysis, and terrestrial or planetary atmospheric science.
192

Laser Filamentation Interaction With Materials For Spectroscopic Applications

Weidman, Matthew 01 January 2012 (has links)
Laser filamentation is a non-diffracting propagation regime consisting of an intense core that is surrounded by an energy reservoir. For laser ablation based spectroscopy techniques such as Laser Induced Breakdown Spectroscopy (LIBS), laser filamentation enables the remote delivery of high power density laser radiation at long distances. This work shows a quasiconstant filament-induced mass ablation along a 35 m propagation distance. The mass ablated is sufficient for the application of laser filamentation as a sampling tool for plasma based spectroscopy techniques. Within the scope of this study, single-shot ablation was compared with multi-shot ablation. The dependence of ablated mass on the number of pulses was observed to have a quasi-linear dependence on the number of pulses, advantageous for applications such as spectroscopy. Sample metrology showed that both physical and optical material properties have significant effects on the filament-induced ablation behavior. A relatively slow filament-induced plasma expansion was observed, as compared with a focused beam. This suggests that less energy was transferred to the plasma during filamentinduced ablation. The effects of the filament core and the energy reservoir on the filamentinduced ablation and plasma formation were investigated. Goniometric measurements of the filament-induced plasma, along with radiometric calculations, provided the number of emitted photons from a specific atomic transition and sample material. This work advances the understanding of the effects of single filaments on the ablation of solid materials and the understanding of filament-induced plasma dynamics. It has lays the foundation for further quantitative studies of multiple filamentation. The implications of this iv work extend beyond spectroscopy and include any application of filamentation that involves the interaction with a solid material
193

Hydride Generation and Laser Spectroscopy Techniques for Trace Analytical Measurements of Antimony and Selenium

Chari, Sangeetha 25 August 2008 (has links)
No description available.
194

Laser Spectroscopy Sensor for Measurements of Trace Gaseous Sulfur Dioxide (SO<sub>2</sub>)

Matta, Anand 17 December 2008 (has links)
No description available.
195

Redox Tuning of Flavin and Ultrafast Electron Transfer Mechanisms in DNA Repair by Photolyases

Zhang, Meng 28 December 2016 (has links)
No description available.
196

Exploration of the Excited States of Organic Molecules and Metal Complexes Using Ultrafast Laser Spectroscopy

Dickson, Nicole Marie 28 July 2011 (has links)
No description available.
197

Ultrafast Dynamics of Excited Molecules probed using Nonlinear Spectroscopy

Siddhant Pandey (18415116) 23 April 2024 (has links)
<p dir="ltr">Some of the simplest molecules that are found in abundance in nature, like oxygen, nitrogen, carbon dioxide and water can be playgrounds for complex quantum mechanical phenomenon. Although we can calculate their static properties, like binding energies, equilibrium geometries and ionization/decay rates with extraordinary precision, their dynamics offer new avenues for exploration. Although analytical techniques have been successfully applied in studying single-particle and many-particle systems, few-particle systems like simple molecules are still best understood through a combination of numerical calculations and experimental work. However, the small size of these molecules endows them with dynamics that occur on timescales of a few picoseconds to a few attoseconds, making their experimental study challenging. The overarching goal of this work is the study of such ‘ultrafast’ dynamics in excited state molecules/atoms, by developing and demonstrating novel optical probes of quantum dynamics.</p><p dir="ltr">One way to probe ultrafast dynamics in molecules is by measuring their nonlinear optical response. Such a measurement can potentially track the evolution of the symmetries of excited molecules, shedding light on their transient dynamics. We start chapter 1 with a brief discussion of the formalism behind nonlinear optical spectroscopy. Direct measurement of ultrafast (and ultraweak) optical pulses is discussed as a useful probe of nonlinear processes. After presenting preliminary results on direct electric field reconstruction, experimental work on measuring emitted nonlinear electric fields from impulsively aligned molecules is discussed. In such an experiment, however, contributions from both aligned and unaligned molecules are present, and new experimental capabilities had to be developed to disentangle and measure the ultraweak signal from aligned molecules. Following a detailed discussion of the developed measurement capabilities, results from experiments done on aligned carbon dioxide and nitrogen molecules are discussed.</p><p dir="ltr">Unlike solids, where electronic states can be excited with visible/UV light, binding energies in isolated atoms/molecules are on the order of electron-volts (eVs), and they need vacuum-ultraviolet (VUV) extreme-ultraviolet (EUV) light to excite electronically. Polyatomic molecules, like ethylene, when excited to an electronic state with VUV light, often relax back to the ground state by redistributing energy to their internal degrees of freedom non-adiabatically. These relaxation pathways are important in many chemical and biological systems, and control the yield of chemical reactions ranging from elementary reactions involving few atoms to large biomolecules such as DNA and proteins. For instance, in the photochemical reaction of the protein Rhodopsin, considered to be the primary event in human vision. In chapter 2 we discuss progress made towards extending nonlinear response measurements to study ultrafast dynamics in electronically excited molecules, using a high-harmonic VUV source. Details about the design of the high-harmonic generation beamline, and preliminary experimental data are presented. In chapter 3 we discuss preliminary theoretical work on the development of an EUV entangled-photon source, using two-photon emission from the metastable 2s state in neutral Helium. Such a source, if demonstrated, can possibly even extended to the zeptosecond regime in the future.</p>
198

Ultrafast charge dynamics in mesoporous materials used in dye-sensitized solar cells

Tiwana, Priti January 2013 (has links)
This thesis is concerned with measuring ultrafast electron dynamics taking place in dye-sensitized mesoporous semiconductor films employed as working electrodes in dye-sensitized solar cells (DSCs). An understanding of these ultrafast charge transfer mechanisms is essential for designing efficient photovoltaic (PV) devices with high photon-to-current conversion efficiency. Optical-pump terahertz-probe (OPTP) spectroscopy is a sub-picosecond resolution, non-contact, photoconductivity measurement technique which can be used to directly measure charge carrier dynamics within nanostructured materials without the need for invoking complex modelling schemes. A combination of OPTP and photovoltaic measurements on mesoporous TiO2 films show an early-time intra-particle electron mobility of 0.1 cm2/(Vs). This value is an order of magnitude lower than that measured in bulk TiO2 and can be partly explained by the restricted electron movement because of geometrical constraints and increased trap sites in the nanostructured material. In addition, the mesoporous film behaves like a nanostructured composite material, with the TiO2 nanoparticles embedded in a low dielectric medium (air or vacuum), leading to lower apparent electron mobility. THz mobility measured in similar mesoporous ZnO and SnO2 films sensitized with the same dye is calculated to be 0.17 cm2/(Vs) for ZnO and 1.01 cm2/(Vs) for SnO2. Possible reasons for the deviation from mobilities reported in literature for the respective bulk materials have been discussed. The conclusion of this study is that while electron mobility values for nanoporous TiO2 films are approaching theoretical maximum values, both intra- and inter-particle electron mobility in mesoporous ZnO and SnO2 films offer considerable scope for improvement. OPTP has also been used to measure electron injection rates in dye-sensitized TiO2, ZnO and SnO2 nanostructured films. They are seen to proceed in the order TiO2 >SnO2 >ZnO. While the process is complete within a few picoseconds in TiO2/Z907, it is seen to extend beyond a nanosecond in case of ZnO. These measurements correlate well with injection efficiencies determined from DSCs fabricated from identical mesoporous films, suggesting that the slow injection components limit the overall solar cell photocurrent. The reasons for this observed difference in charge injection rates have been explored within. It is now fairly common practice in the photovoltaic community to apply a coating of a wide band-gap material over the metal-oxide nanoparticles in DSCs to improve device performance. However, the underlying reasons for the improvement are not fully understood. With this motivation, OPTP spectroscopy has been used to study how the conformal coating affects early-time mechanisms, such as electron injection, trapping or diffusion length. The electron injection process is unaffected in case of TiCl4-treated TiO2 and MgO-treated ZnO, while it becomes much slower in case of MgO-treated SnO2. Finally, a light-soaking effect observed in SnO2-based solid-state DSCs has been examined in detail using THz spectroscopy and transient PV measurement techniques. It is concluded that continued exposure to light results in a rearrangement of charged species at the metal-oxide surface. This leads to an increase in the density of acceptor states or a lowering of the SnO2 conduction band edge with respect to the dye excited state energy level, ultimately leading to faster electron transport and higher device photocurrents.
199

Development of a non-collinearly phase matched optical parametric amplifier and application in pump-probe spectroscopy

Rohwer, Egmont J. 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2011. / Please refer to full text to view abstract.
200

Photoinduced charge dynamics in indoline-dye sensitised solar cells

Minda, Iulia 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The demand for renewable energy sources has grown out of the humanity’s increasing need for electricity as well as depleting fossil fuel reserves. Organic-dye sensitised solar cells were developed as a green, cost-effective alternative to the market-dominating silicon solar cell technology. The field of photovoltaic devices and organic-DSSCs is interesting because we want to develop better, more efficient cells at lower costs using environmentally friendly materials. By studying the fundamental physics and chemistry processes occurring during and after the interaction of light with these devices, we create a window into the mechanism of photosynthesis. Our DSSCs were prepared by sensitisation of highly porous ZnO with different indoline dyes containing the same chromophore, but different alkyl chain lengths bonded to one of two carboxyl anchors as: DN91 (1 C) < DN216 (5 C) < DN285 (10 C). The role of the dye molecules is to absorb photons and donate electrons to the ZnO which acts as the charge acceptor, at the dye|ZnO interface. Through photoelectrochemical characterisation it was found that the structure of the dyes has an effect on the maximum current (JSC) produced by the cells: the shorter the alkyl chain, the higher the JSC. This macroscopic investigation was complimented by microscopic measurements in the form of transient absorption spectroscopy. This allows us to follow, in real time, the photoinduced oxidation of the dye and its regeneration occurring through desired and undesired pathways. It was found that the injection efficiencies of the dye molecules were directly responsible for the trend in the short circuit currents. / AFRIKAANSE OPSOMMING: Die aanvraag na die ontwikkeling van herwinbare energie bronne spruit voort uit die voorsienbare uitputting van fossiel brandstof bronne sowel as die groeiende behoefte om aan die mensdom se elektrisiteit behoeftes te voldoen. Kleurstof gesensitiseerde sonselle is ontwikkel as ’n groen, koste-effektiewe alternatief tot die silikon sonsel tegnologie wat die mark domineer. Die fotovoltaïse toestel veld, spesifiek organiese kleurstof gesensitiseerde sonselle is interessant omdat daar ruimte bestaan vir die ontwikkeling van beter meer effektiewe selle in terme van vervaardigings koste en prosesse wat omgewingsvriendelik is. Deur die fundamentele fisika en chemiese prosesse wat plaas vind tydens en na lig interaksie met hierdie selle te bestudeer gee dit insig oor die werkingsmeganisme van fotosintese. Ons kleurstof gesensitiseerde sonselle is voorberei deur sensitasie van hoogs poreuse ZnO met verskillende indolien kleurstowwe wat dieselfde kromofoor bevat wat met verskillende alkiel ketting lengtes verbind is aan een van twee karboksiel ankers as: DN91 (1 C) < DN216 (5 C) < DN285 (10 C). Die rol van die kleurstof molekules is om fotone te absorbeer en elektrone te doneer aan die ZnO wat as die lading akseptor dien by die kleurstof|ZnO intervlak. Deur fotoelektrochemiese karakterisasie is bevind dat die struktuur van die kleurstof ’n effek het op die maksimum stroom (JSC) wat die selle produseer: hoe korter die die akiel ketting, hoe hoër die JSC. Hierdie makroskopiese ondersoek is voltooi deur mikroskopiese metings in die vorm van tydopgelosde absorpsiespektroskopie. Dit laat ons toe om die fotogeinduseerde oksidasie asook regenerasie van die kleurstof te volg soos wat dit plaas vind deur gewenste sowel as ongewenste roetes. Dit is bevind dat die inspuitings effektiwiteit van die kleurstof molekules direk verantwoordelik is vir die waarneembare trajek in die kortsluitings stroom.

Page generated in 0.0699 seconds