• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 14
  • 10
  • 9
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 284
  • 284
  • 54
  • 48
  • 37
  • 35
  • 34
  • 25
  • 24
  • 23
  • 23
  • 23
  • 22
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Exploring Organic Dyes for Grätzel Cells Using Time-Resolved Spectroscopy

El-Zohry, Ahmed M. January 2015 (has links)
Grätzel cells or Dye-Sensitized Solar Cells (DSSCs) are considered one of the most promising methods to convert the sun's energy into electricity due to their low cost and simple technology of production. The Grätzel cell is based on a photosensitizer adsorbed on a low band gap semiconductor. The photosensitizer can be a metal complex or an organic dye. Organic dyes can be produced on a large scale resulting in cheaper dyes than complexes based on rare elements. However, the performance of Grätzel cells based on metal-free, organic dyes is not high enough yet. The dye's performance depends primarily on the electron dynamics. The electron dynamics in Grätzel cells includes electron injection, recombination, and regeneration. Different deactivation processes affect the electron dynamics and the cells’ performance. In this thesis, the electron dynamics was explored by various time-resolved spectroscopic techniques, namely time-correlated single photon counting, streak camera, and femtosecond transient absorption. Using these techniques, new deactivation processes for organic dyes used in DSSCs were uncovered. These processes include photoisomerization, and quenching through complexation with the electrolyte. These deactivation processes affect the performance of organic dyes in Grätzel cells, and should be avoided. For instance, the photoisomerization can compete with the electron injection and produce isomers with unknown performance. Photoisomerization as a general phenomenon in DSSC dyes has not been shown before, but is shown to occur in several organic dyes, among them D149, D102, L0 and L0Br. In addition, D149 forms ground state complexes with the standard iodide/triiodide electrolyte, which directly affect the electron dynamics on TiO2. Also, new dyes were designed with the aim of using ferrocene(s) as intramolecular regenerators, and their dynamics was studied by transient absorption. This thesis provides deeper insights into some deactivation processes of organic dyes used in DSSCs. New rules for the design of organic dyes, based on these insights, can further improve the efficiency of DSSCs.
212

Experimental Techniques for Studies in Atomic & Molecular Physics

Heijkenskjöld, Filip January 2008 (has links)
This thesis is based on a selection of six different experimental techniques used for studies in atomic and molecular physics. The techniques analysed in the thesis are compared to find similarities in strategies and ways to avoid sources of error. Paper 1 deals with collision based spectroscopy with 60 keV Xe6+ ions on sodium and argon gas targets. Information on energy of Rydberg states in Xe5+ is unveiled by optical spectroscopy in the wavelength range from vacuum ultraviolet (VUV) to visible. In paper 2, the fast ion-beam laser spectroscopy (FIBLAS) is adapted for measuring hyperfine structure of barium isotopes in an isotopically pure ion-beam. This techniques involves changing the isotope during the measurement to minimize sources of error in measurement and enhance the signal from lesser abundant isotopes. The FIBLAS technique is used in paper 3 to study samarium ions. The ions are optically pumped and the recorded optical nutation is used to measure transition probabilities. This technique eludes the difficulties inherent in relative intensity measurements of all the radiative transitions from an excited state. In Paper 4, optical emission spectroscopy is used in the VUV region to study noble gas mixture discharges. The source of the emission bands near the resonance lines of krypton and xenon are found to be heteronuclear dimers. In paper 5, radiation from a pulsed argon plasma with admixture of nitrogen is studied with time resolved spectroscopy in the VUV and ultraviolet wavelength ranges to investigate the mechanism of energy transport. A metastable state of atomic argon is found to be an important source of energy to many radiative processes. In Paper 6, photoelectron spectroscopy (PES) on thiophene, on 3-bromothiophene and on 3,4-dibromothiophene using time-of-flight photoelectron-photoelectron coincidence technique and conventional PES to investigate the onset of double ionisation compared to the onset of single ionisation in molecules.
213

Molecular Beam Studies of Energy Transfer in Molecule Surface Interactions / Untersuchung des Energietransfers in Molekuel Oberflaechen Wechselwirkungen mit Hilfe von Molekularstrahlexperimenten

Russell, James Cooper 29 November 2011 (has links)
No description available.
214

Laserspektroskopische Untersuchungen zur Dynamik von ionischen Flüssigkeiten mit Hilfe molekularer Sonden / Laser spectroscopic studies of the dynamics of ionic liquids using molecular probes

Lohse, Peter William 12 October 2010 (has links)
No description available.
215

The electronic spectrum of selenium dioxide

Crowther, Sarah Anne January 2003 (has links)
The C͂¹B₂ ← X͂¹A₁ electronic transition of SeO₂ has been investigated under high resolution, at a rotational temperature of around 10 K, using the technique of Laser Excitation Spectroscopy. The vibrationally-resolved survey spectrum contained around 100 new bands in addition to the bands which had been reported in a previous study of the same region (G.W. King and P.R. McLean, J. Mol. Spec. 51, 1974). In the light of this new spectrum a number of bands have been reassigned, most significantly the O⁰₀ band, and a number of progressions have been extended. This led to a revised determination of the vibrational constants of the excited state, and a more acceptable estimate of v'₃ than was suggested in the previous work. These reassignments and extensions of existing assignments accounted for only a small fraction of the newly observed bands; those remaining are thought to be due to a different electronic transition which lies in the same region as the C͂¹B₂ ← X͂¹A₁ transition. The 1³₀, 1²₀ and 1¹₀ bands of the C͂¹B₂ ← X͂¹A₁ transition were also recorded at rotational resolution and analysed using the method of ground state combination differences. The 1³₀ band was found to be perturbed, which was one of the major factors which prompted the survey study described above. From the analysis of these bands the rotational constants of the excited state were determined and hence the geometry of the SeO₂ molecule in the given vibrational levels of the ¹B₂ excited state was calculated. This in turn enabled the rotational constants and the geometry of the (00) vibrational level of the excited state to be estimated. This work confirms that the symmetry of the excited state is ¹B₂ and the transition studied is C͂¹B₂ ← X͂¹A₁. An additional band around 31957 cm⁻¹ was also recorded at rotational resolution, which was initially though to be the O⁰₀ band, on the basis of King and McLean's assignments. However in the light of the reassignments the nature of this band is not known, and attempts to assign it as vibrationally cold band of the C͂¹B₂ ← X͂¹A₁ transition were unsuccessful, implying that it is probably either a hot band of the C͂¹B₂ ← X͂¹A₁ transition or a band belonging to different electronic transition.
216

Development of bio-photonic sensor based on laser-induced fluorescence

Kim, Chan Kyu. January 2007 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Physics and Astronomy. / Title from title screen. Includes bibliographical references.
217

Modulární systém pro prvkovou analýzu metodou laserové spektroskopie / Modular System for Elemental Analysis using Laser Spectroscopy

Klempa, Tomáš January 2015 (has links)
This diploma thesis is solved for AtomTrace Company and describes mechanical design of modular system for elemental analysis using laser spectroscopy. Object of this thesis is to create at once compact and modular system, with addition of liquid analysis module. System described in this work came out from current solution and is capable of interaction of new and previous modules. New solution is more economical both in budget and mass, whole system is fully functional and liquid analysis module with flat jet has 40 % stability, as described in experiments. The benefit of this work is possible future integration of system or separate modules into the AtomTrace portfolio and industry applications.
218

Charge carrier dynamics of lead halide perovskites probed with ultrafast spectroscopy

Rivett, Jasmine Pamela Helen January 2018 (has links)
In this thesis, we investigate the nature of charge carrier generation, relaxation and recombination in a range of lead halide perovskites. We focus on understanding whether the photophysical behaviour of these perovskite materials is like that of highly-ordered inorganic crystalline semiconductors (exhibiting ballistic charge transport) or disordered molecular semiconductors (exhibiting strong electron-phonon coupling and highly localised excited states) and how we can tune these photophysical properties with inorganic and organic additives. We find that the fundamental photophysical properties of lead halide perovskites, such as charge carrier relaxation and recombination, arise from the lead halide lattice rather than the choice of A-site cation. We show that while the choice of A-site cation does not affect these photophysical properties directly, it can have a significant impact on the structure of the lead halide lattice and therefore affect these photophysical properties indirectly. We demonstrate that lead halide perovskites fabricated from particular inorganic and organic A-site cation combinations exhibit low parasitic trap densities and enhanced carrier interactions. Furthering our understanding of how the photophysical properties of these materials can be controlled through chemical composition is extremely important for the future design of highly efficient solar cells and light emitting diodes.
219

Desenvolvimento de um laser Raman com bombeamento transversal em configuração de ângulo rasante / Development of a side-pumped Raman laser in a grazing incidence geometry

KORES, CRISTINE C. 23 July 2015 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-07-23T10:59:51Z No. of bitstreams: 0 / Made available in DSpace on 2015-07-23T10:59:51Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
220

Desenvolvimento de um laser Raman com bombeamento transversal em configuração de ângulo rasante / Development of a side-pumped Raman laser in a grazing incidence geometry

KORES, CRISTINE C. 23 July 2015 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-07-23T10:59:51Z No. of bitstreams: 0 / Made available in DSpace on 2015-07-23T10:59:51Z (GMT). No. of bitstreams: 0 / Lasers Raman são dispositivos que proporcionam uma maneira prática de transformar comprimentos de onda fundamentais em novas linhas espectrais via Espalhamento Raman Estimulado (Stimulated Raman Scattering - SRS). Quando combinados com outros processos de conversão não lineares, os lasers Raman fornecem acesso a comprimentos de onda na região do visível no espectro eletromagnético, que de outra maneira seriam de difícil acesso, como o laranja-amarelo, verde-limão e diversas linhas no azul. A grande vantagem dos lasers Raman é a possibilidade de geração de múltiplas frequências a partir de uma mesma combinação de cristais, tornando esse tipo de laser dispositivos baratos e compactos quando comparados a tecnologias como OPO. Neste trabalho um cristal de Nd:YVO4 foi bombeado por diodo, em configuração transversal, sendo o cristal o responsável pela emissão laser e pelo espalhamento Raman. Na primeira parte do trabalho, a cavidade utilizada apresentava alto fator de qualidade para o comprimento de onda fundamental (1064 nm) e foi estudada a operação laser do 1º Stokes (1176 nm) em regimes de operação quase contínua (q-cw) e contínua (cw). Foi explorada a configuração com uma dobra do feixe laser em ângulo rasante na superfície de bombeamento, bem como a configuração com duas dobras nesta mesma superfície (double beam mode controlling - DBMC). Na segunda parte do trabalho, um cristal LBO foi utilizado para a geração do segundo harmônico (SHG) em 588 nm, o que corresponde a um laser laranja-amarelo. Foi utilizada a configuração com uma dobra e operação cw,com a qual a cavidade apresentava alto fator de qualidade tanto para o 1064 nm quanto 1176 nm. Com a configuração de uma dobra, foi demonstrado que o laser Raman opera em multimodo, com uma variedade de modos de Hermite-Gauss que puderam ser selecionados através apenas do alinhamento da cavidade, incluindo o modo TEM00. Com configuração DBMC, o laser apresentou operação estável oscilando o modo TEM00. Em 1176 nm em regime q-cw, foi obtida a potência máxima de 8,2 W por pulso (multimodo) e 11,7% de eficiência óptica de conversão (diodo para o 1º Stokes), e operando em modo TEM00 a potência máxima de 3,7 W por pulso e eficiência de 5,4% foi obtida com a configuração de duas dobras, de maneira que a tecnologia DBMC se mostrou eficiente para geração de um laser robusto e estável operando com o modo TEM00. Em regime cw o melhor resultado em termos de potência e eficiência foi obtido com a configuração de uma dobra, correspondendo a 1,8 W e 7,3% de eficiência com o laser operando em multimodo. Com o laser laranja, foi demonstrada a operação do modo TEM00 para potências de bombeamento abaixo de 14,5 W. A potência máxima obtida em multimodo foi 820 mW correspondendo a 4% de eficiência óptica de conversão. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP

Page generated in 0.0746 seconds