Spelling suggestions: "subject:"lastprognostisering"" "subject:"vinstprognostisering""
1 |
Elektrisk lastprognostisering för byggnader / Electrical load prediction for buildingsBojestig, John January 2019 (has links)
Om världen ska kunna ställa om till förnyelsebara energikällor krävs det nya och bättre tekniklösningar. En liten del av lösningen på balanseringsproblematiken på elnätet som icke-reglerbara energikällor som sol- och vindkraft står för kan vara att sköta en del av balanseringen lokalt i byggnader med hjälp av batterilager. För att kunna styra den balanseringen på ett optimalt sätt behöver styrningen ha prognoser för hur stor den elektriska lasten i byggnaden kommer vara framöver. Syftet med denna studie har varit att utföra en elektrisk lastprognostisering för en byggnad över ett dygn. Modellen som utförde elektrisk lastprognostisering för en byggnad har baserats på neurala nätverk. Istället för att ha ett neuralt nätverk som prognostiserar över hela dygnet har 24 olika neurala nätverk prognostiserat varsin timma. Varje neuralt nätverk har valts efter tester mellan ett flertal neurala nätverk med variationer i parametrar som har tagits fram med hjälp av en klusteralgoritm. Resultatet visade att modellen som tagits fram i studien prognostiserade den elektriska lasten i en byggnad över ett dygn med en felmarginal enligt mean average percentage error på 5.67%. Det gick även att se fördelar med att dela upp prognostiseringen i mindre delar och testa olika parametrar för varje timma som skulle prognostiseras. Med avseende på jämförelser med andra studier och att bostadshus är ett välkänt svårt prognostiseringsproblem bör resultatet anses som godkänt. Det mesta tyder på att prognostiseringsmodellen är tillräckligt bra för att kunna assistera en smart styrning av ett batteri i en byggnad med användbar information / If the world should be able to convert to renewable energy sources, new and better technical solutions is required. A small part of the solution to the balancing problem on the electricity grid, as non-controllable energy sources such as solar and wind power is highly responsible for, can be to handle part of the balancing locally in buildings using battery storage. In order to be able to control this balancing in the optimal way, the control system needs to have forecasts of how large the electric load in the building will be in the future. The aim of this study has been to carry out electrical load prediction for a building over one day. The model that carried out electrical load forecasting for a building has been based on neural networks. Instead of having one neural network that predicts the whole day, 24 different neural networks have been forecasting each hour. Each neural network has been selected after testing between several neural networks with variations in parameters that have been selected using a cluster algorithm. The result showed that the model developed in the study predicted the electric load in a building over one day with a mean average percentage error of 5.67%. It was also possible to see the advantages of dividing the prediction into smaller parts and testing different parameters for each hour that would be forecast. With regard to comparisons with other studies and that residential buildings are a well-known difficult forecasting problem, the result should be considered as acceptable. Most indications show that the forecasting model is good enough to be able to assist a smart control of a battery in a building with useful information.
|
2 |
Framtidens lågspänningsnät : Analys av utmaningar och lösningar med ny teknik i nätet / The future of low voltage grids : Analysis of challenges and solutions with new technologies implementedDellham, Oscar January 2023 (has links)
With an ever growing demand for electricity, it is tough to know which challenges will be the most pressing and which solutions will be appropriate to implement in different cases. This thesis utilizes simulations of three low voltage grids to see which part of the grid is most vulnerable, to which extent grid reinforcement is needed to solve voltage and load problems, and what amount of demand flexibility services would be an adequate substitute to grid reinforcement. The three grids consists of a meshed grid in a suburban area, a radial grid in the city and a radial grid in the countryside. The grids are subjected to full penetration of electric vehicle chargers in a winter setting and full solar power penetration in a summer setting. The results indicate that the transformer is overloaded in both residential grids, although even more so in the meshed grid as opposed to radial grid wherein the cables are most overloaded. The countryside grid had some voltage problems in the summer, but were overall not affected notably. The conclusions were that the increase in electric vehicle chargers will be the most impending challenge and that grid reinforcement will be necessary in the long run but that demand flexibility services are a viable option in the meantime. The transformer would also need an upgrade in both residential grids.
|
Page generated in 0.1022 seconds