• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 12
  • 12
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

[en] HYBRID INTELLIGENT SYSTEM FOR CLASSIFICATION OF NON-RESIDENTIAL ELECTRICITY CUSTOMERS PAYMENT PROFILES / [pt] SISTEMA INTELIGENTE HÍBRIDO PARA CLASSIFICAÇÃO DO PERFIL DE PAGAMENTO DOS CONSUMIDORES NÃO-RESIDENCIAIS DE ENERGIA ELÉTRICA

NORMA ALICE DA SILVA CARVALHO 26 March 2018 (has links)
[pt] O objetivo desta pesquisa é classificar o perfil de pagamento dos consumidores não-residenciais de energia elétrica, considerando conhecimento armazenado em base de dados de distribuidoras de energia elétrica. A motivação para desenvolvê-la surgiu da necessidade das distribuidoras por um modelo de suporte a formulação de estratégias capazes de reduzir o grau inadimplência. A metodologia proposta consiste em um sistema inteligente híbrido composto por módulos intercomunicativos que usam conhecimentos armazenados em base de dados para segmentar consumidores e, então, atingir o objetivo proposto. O sistema inicia-se com o módulo neural, que aloca as unidades consumidoras em grupos conforme similaridades (valor fatura, consumo, demanda medida/demanda contratada, intensidade energética e peso da conta no orçamento), em sequência, o módulo bayesiano, estabelece um escore entre 0 e 1 que permite predizer o perfil de pagamento das unidades considerando os grupos gerados e os atributos categóricos (atividade econômica, estrutura tarifária, mesorregião, natureza jurídica e porte empresarial) que caracterizam essas unidades. Os resultados revelaram que o sistema proposto estabelece razoável taxa de acerto na classificação do perfil de consumidores e, portanto, constitui uma importante ferramenta de suporte a formulação de estratégias para combate à inadimplência. Conclui-se que, o sistema híbrido proposto apresenta caráter generalista podendo ser adaptado e implementado em outros mercados. / [en] The objective of this research is to classify the non-residential electricity customer payment profiles regarding the knowledge stored in electricity distribution utilities databases. The motivation for development of the work from the need of electricity distribution by a support model to formulate strategies for tackling non-payment and late payment. The proposed methodology consists of a hybrid intelligent system constituted by intercommunicating modules that use knowledge stored in database to customer segmentation and then achieve the proposed objective. The system begins with the neural module, which allocates the consuming units in groups according to similarities (bill amount, consumption, measured demand/contracted demand, energy intensity and share of the electricity bill in the customer s income), in sequence, the Bayesian module establishes a score between 0 and 1 that allows to predict what payment profile of the units considering the generated groups and categorical attributes (business activity, tariff type, business size, mesoregion and company s legal form) that characterize these units. The results showed that the proposed system provides a reasonable success rate when classifying customer profiles and thus constitutes an important tool in the formulation of strategies for tackling non-payment and late payment. In conclusion, the hybrid system proposed here is a generalist one and could usefully be adapted and implemented in other markets.
12

[en] METHODOLOGY FOR INCORPORATING THE DEFAULT RISK ON THE RENEWABLE GENERATOR CONTRACTING MODEL IN THE BRAZILIAN ENERGY MARKET / [pt] METODOLOGIA PARA A INCORPORAÇÃO DO RISCO DE INADIMPLÊNCIA NO MODELO DE CONTRATAÇÃO DE GERADORES RENOVÁVEIS NO MERCADO BRASILEIRO DE ENERGIA

ANDREA MICHELI ALZUGUIR 29 June 2015 (has links)
[pt] Nesta dissertação será proposta uma metodologia que contabiliza o risco de inadimplência no mercado, decorrentes de débitos não pagos à câmara de comercialização de energia elétrica (CCEE) nas estratégias de contratação de geradores renováveis. As incertezas relacionadas à geração e ao preço de curto prazo são consideradas através da simulação de cenários exógenos ao modelo como habitual em otimização estocástica. A otimização robusta é empregada através de conjuntos de incerteza poliédricos a fim de modelar a inadimplência do mercado. Dessa maneira, a metodologia proposta se baseia em um modelo matemático híbrido, robusto e estocástico. De forma mais objetiva, um modelo de dois níveis é proposto com tantos problemas de segundo nível quanto o número de cenários considerados para a produção renovável. No primeiro nível, as decisões de contratação são feitas. Em seguida, para cada cenário de geração, o problema de segundo nível encontra a pior inadimplência com base na carteira de contratos encontrados pelo primeiro nível. Para resolver o problema, o modelo de dois níveis é reescrito como um problema linear equivalente de um único nível. O perfil de risco do agente é definido por meio do conhecido valor condicional em risco (conditional value-a-risk), uma medida coerente de risco. Para ilustrar a eficácia do modelo de contratação, são realizados estudos de casos com dados realistas do sistema de energia brasileiro. / [en] In this dissertation we propose a new methodology to account for the market default risk, arising from debts not paid to the market clearing house, in the renewable generators contracting strategy. Renewable generation and spot price uncertainties are considered through exogenous simulated scenarios as customary in stochastic optimization. Robust optimization with polyhedral uncertainty sets is employed to account for the market default. Thus, the proposed methodology is based on a hybrid robust and stochastic mathematical program. More objectively, a bi-level model is proposed with as many second-level problems as the number of scenarios considered for the renewable production. In the first level, contracting decisions are made. Then, for each generation scenario, a second-level problem finds the worst-case default based on the portfolio of contracts found by the first level. To solve the problem, the bi-level model is rewritten as a single-level equivalent linear problem. The agent s risk profile is defined by means of the well-known conditional value-at-risk coherent risk measure. To illustrate the effectiveness of the contracting model, case studies are performed with realistic data from the Brazilian power system.

Page generated in 0.0532 seconds