Spelling suggestions: "subject:"datent class 1inear mixed model"" "subject:"datent class 1inear mixed godel""
1 |
Classification et modélisation statistique intégrant des données cliniques et d’imagerie par résonance magnétique conventionnelle et avancée / Classification and statistical modeling based on clinical and conventional and advanced Magnetic Resonance Imaging dataTozlu, Ceren 19 March 2018 (has links)
L'accident vasculaire cérébral et la sclérose en plaques figurent parmi les maladies neurologiques les plus destructrices du système nerveux central. L'accident vasculaire cérébral est la deuxième cause de décès et la principale cause de handicap chez l'adulte dans le monde alors que la sclérose en plaques est la maladie neurologique non traumatique la plus fréquente chez l'adulte jeune. L'imagerie par résonance magnétique est un outil important pour distinguer le tissu cérébral sain du tissu pathologique à des fins de diagnostic, de suivi de la maladie, et de prise de décision pour un traitement personnalisé des patients atteints d'accident vasculaire cérébral ou de sclérose en plaques. La prédiction de l'évolution individuelle de la maladie chez les patients atteints d'accident vasculaire cérébral ou de sclérose en plaques constitue un défi pour les cliniciens avant de donner un traitement individuel approprié. Cette prédiction est possible avec des approches statistiques appropriées basées sur des informations cliniques et d'imagerie. Toutefois, l'étiologie, la physiopathologie, les symptômes et l'évolution dans l'accident vasculaire cérébral et la sclérose en plaques sont très différents. Par conséquent, dans cette thèse, les méthodes statistiques utilisées pour ces deux maladies neurologiques sont différentes. Le premier objectif était l'identification du tissu à risque d'infarctus chez les patients atteints d'accident vasculaire cérébral. Pour cet objectif, les méthodes de classification (dont les méthodes de machine learning) ont été utilisées sur des données d'imagerie mesurées à l'admission pour prédire le risque d'infarctus à un mois. Les performances des méthodes de classification ont été ensuite comparées dans un contexte d'identification de tissu à haut risque d'infarctus à partir de données humaines codées voxel par voxel. Le deuxième objectif était de regrouper les patients atteints de sclérose en plaques avec une méthode non supervisée basée sur des trajectoires individuelles cliniques et d'imagerie tracées sur cinq ans. Les groupes de trajectoires aideraient à identifier les patients menacés d'importantes progressions et donc à leur donner des médicaments plus efficaces. Le troisième et dernier objectif de la thèse était de développer un modèle prédictif pour l'évolution du handicap individuel des patients atteints de sclérose en plaques sur la base de données démographiques, cliniques et d'imagerie obtenues a l'inclusion. L'hétérogénéité des évolutions du handicap chez les patients atteints de sclérose en plaques est un important défi pour les cliniciens qui cherchent à prévoir l'évolution individuelle du handicap. Le modèle mixte linéaire à classes latentes a été utilisé donc pour prendre en compte la variabilité individuelle et la variabilité inobservée entre sous-groupes de sclérose en plaques / Stroke and multiple sclerosis are two of the most destructive neurological diseases of the central nervous system. Stroke is the second most common cause of death and the major cause of disability worldwide whereas multiple sclerosis is the most common non-traumatic disabling neurological disease of adulthood. Magnetic resonance imaging is an important tool to distinguish healthy from pathological brain tissue in diagnosis, monitoring disease evolution, and decision-making in personalized treatment of patients with stroke or multiple sclerosis.Predicting disease evolution in patients with stroke or multiple sclerosis is a challenge for clinicians that are about to decide on an appropriate individual treatment. The etiology, pathophysiology, symptoms, and evolution of stroke and multiple sclerosis are highly different. Therefore, in this thesis, the statistical methods used for the study of the two neurological diseases are different.The first aim was the identification of the tissue at risk of infarction in patients with stroke. For this purpose, the classification methods (including machine learning methods) have been used on voxel-based imaging data. The data measured at hospital admission is performed to predict the infarction risk at one month. Next, the performances of the classification methods in identifying the tissue at a high risk of infarction were compared. The second aim was to cluster patients with multiple sclerosis using an unsupervised method based on individual clinical and imaging trajectories plotted over five 5 years. Clusters of trajectories would help identifying patients who may have an important progression; thus, to treat them with more effective drugs irrespective of the clinical subtypes. The third and final aim of this thesis was to develop a predictive model for individual evolution of patients with multiple sclerosis based on demographic, clinical, and imaging data taken at study onset. The heterogeneity of disease evolution in patients with multiple sclerosis is an important challenge for the clinicians who seek to predict the disease evolution and decide on an appropriate individual treatment. For this purpose, the latent class linear mixed model was used to predict disease evolution considering individual and unobserved subgroup' variability in multiple sclerosis
|
2 |
Modèles statistiques pour l'étude de la progression de la maladie rénale chronique / Statistical models to study progression of chronic kidney diseaseBoucquemont, Julie 15 December 2014 (has links)
Cette thèse avait pour but d'illustrer l'intérêt de méthodes statistiques avancées lorsqu'on s'in téresse aux associations entre différents facteurs et la progression de la maladie rénale chronique (MRC). Dans un premier temps, une revue de la littérature a été effectuée alin d'identifier les méthodes classiquement utilisées pour étudier les facteurs de progression de la MRC ; leurs limites et des méthodes permettant de mieux prendre en compte ces limites ont été discutées. Notre second travail s'est concentré sur les analyses de données de survie et la prise en compte de la censure par intervalle, qui survient lorsque l'évènement d'intérêt est la progression vers un stade spécifique de la MRC, et le risque compétitif avec le décès. Une comparaison entre des modèles de survie standards et le modêle illness-death pour données censurées par intervalle nous a permis d'illustrer l'impact de la modélisation choisie sur les estimations à la fois des effets des facteurs de risque et des probabilités d'évènements, à partir des données de la cohorte NephroTest. Les autres travaux ont porté sur les analyses de données longitudinales de la fonction rénale. Nous avons illustré l'intérêt du modèle linéaire mixte dans ce contexte et présenté son extension pour la prise en compte de sous-populations de trajectoires de la fonction rénale différentes. Nous avons ainsi identifier cinq classes, dont une avec un déclin très rapide et une autre avec une amélioration de la fonction rénale au cours du temps. Des perspectives de travaux liés à la prédiction permettent enfin de lier les deux types d'analyses présentées dans la thèse. / The objective of this thesis was to illustrate the benefit of using advanced statistical methods to study associations between risk factors and chrouic kidney disease (CKD) progression. In a first time, we conducted a literature review of statistical methods used to investigate risk factors of CKD progression, identified important methodological issues, and discussed solutions. In our sec ond work, we focused on survival analyses and issues with interval-censoring, which occurs when the event of interest is the progression to a specifie CKD stage, and competing risk with death. A comparison between standard survival models and the illness-death mode! for interval-censored data allowed us to illustrate the impact of modeling on the estimates of both the effects of risk factors and the probabilities of events, using data from the NephroTest cohort. Other works fo cused on analysis of longitudinal data on renal function. We illustrated the interest of linear mixed mode! in this context and presented its extension to account for sub-populations with different trajectories of renal function. We identified five classes, including one with a strong decline and one with an improvement of renal function over time. Severa! perspectives on predictions bind the two types of analyses presented in this thesis.
|
Page generated in 0.1192 seconds