• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 18
  • 17
  • 12
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Full-Scale-Lateral-Load Test of a 1.2 m Diameter Drilled Shaft in Sand

McCall, Amy Jean Taylor 25 March 2006 (has links)
The soil-structure interaction models associated with laterally loaded deep foundations have typically been based on load tests involving relatively small diameter foundations. The lateral soil resistance for larger diameter foundations has been assumed to increase linearly with diameter; however, few, if any load tests have been performed to confirm this relationship. To better understand the lateral resistance of large diameter deep foundations in sand, a series of full scale, cyclic, lateral load tests were performed on two 1.2 m diameter drilled shafts and a 0.324 m diameter steel pipe pile in sand. Although the tests involve two different foundation types, the upper 2.4 m of the profile, which provides the majority of the lateral resistance, consists of sand compacted around both foundation types. Therefore, these test results make it possible to evaluate the effect of foundation diameter on lateral soil resistance. The drilled shafts were first loaded in one direction by reacting against a fifteen-pile group. Subsequently a load test was performed in the opposite direction by reacting against a 9-pile group. The soil profile below the 2.4 m-thick layer of compacted sand consisted of interbedded layers of sand and fine-grained soil. For the drilled shaft load tests, pile head deflection and applied load were measured by string potentiometers and load cells, respectively. Tilt was also measured as a function of depth with an inclinometer which was then used to calculate deflection and bending moment as a function of depth. For the pipe pile, deflection and applied load were also measured; however, bending moment was computed based on strain gauges readings along the length of the pile. The lateral response of the drilled shafts and pipe pile were modeled using the computer programs LPILE (Reese et al., 2000), SWM6.0 (Ashour et al., 2002), and FB-MultiPier Version 4.06 (Hoit et al., 2000). Comparisons were made between the measured and computed load-deflection curves as well as bending moment versus depth curves. Soil parameters in the computer programs were iteratively adjusted until a good match between measured and computed response of the 0.324 m pipe pile was obtained. This refined soil profile was then used to model the drilled shaft response. User-defined p-multipliers were selected to match the measured results with the calculated results. On average very good agreement was obtained between measured and computed response without resorting to p-multipliers greater than 1.0. These results suggest that a linear increase in lateral resistance with foundation diameter is appropriate. LPILE typically produced the best agreement with measured response although the other programs usually gave reasonable results as well. Cyclic loading generally reduced the lateral resistance of the drilled shafts and pile foundation by about 20%.
22

Development of a Design Guideline for Bridge Pile Foundations Subjected to Liquefaction Induced Lateral Spreading

Nasr, Jonathan A. 11 January 2018 (has links)
Effective-stress nonlinear dynamic analyses (NDA) were performed for piles in liquefiable sloped ground to assess how inertia and liquefaction-induced lateral spreading combine in long-duration vs. short-duration earthquakes. A parametric study was performed using input motions from subduction and crustal earthquakes covering a wide range of earthquake durations. The NDA results were used to evaluate the accuracy of the equivalent static analysis (ESA) recommended by Caltrans/ODOT for estimating pile demands. Finally, the NDA results were used to develop new ESA methods to combine inertial and lateral spreading loads for estimating elastic and inelastic pile demands. The NDA results showed that pile demands increase in liquefied conditions compared to nonliquefied conditions due to the interaction of inertia (from superstructure) and kinematics (from liquefaction-induced lateral spreading). Comparing pile demands estimated from ESA recommended by Caltrans/ODOT with those computed from NDA showed that the guidelines by Caltrans/ODOT (100% kinematic combined with 50% inertia) slightly underestimates demands for subduction earthquakes with long durations. A revised ESA method was developed to extend the application of the Caltrans/ODOT method to subduction earthquakes. The inertia multiplier was back-calculated from the NDA results and new multipliers were proposed: 100% Kinematic + 60% Inertia for crustal earthquakes and 100% Kinematic + 75% Inertia for subduction earthquakes. The proposed ESA compared reasonably well against the NDA results for elastic piles. The revised method also made it possible to estimate demands in piles that performed well in the dynamic analyses but could not be analyzed using Caltrans/ODOT method (i.e. inelastic piles that remained below Fult on the liq pushover curve). However, it was observed that the pile demands became unpredictable for cases where the pile head displacement exceeded the displacement corresponding to the ultimate pushover force in liquefied conditions. Nonlinear dynamic analysis is required for these cases to adequately estimate pile demands.
23

Investigation of lateral performance of an ATV tire on natural, deformable surfaces

Krueger, Darrell R. Johnes, Peter D. January 2007 (has links)
Thesis--Auburn University, 2007. / Abstract. Vita. Includes bibliographic references (p.148-150).
24

Effect of lateral force on passenger comfort during a mechanically assisted dependent transfer /

Mast, Jonathan J. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 86-87). Also available on the World Wide Web.
25

Effect of Repeated Cyclic Lateral Loads on Load Bearing Shear Wall Panels

de Lisle, D. J. 04 1900 (has links)
<p> The slitted wall, a concept originally used to improve the properties of infilled wall panels, is applied to shear wall structures. An ordinary reinforced concrete wall and three slitted walls were tested under cycles of repeated lateral displacements. The effect of vertical load and the lengthening of the slits to full panel height was also investigated. </p> <p> The walls are compared by considering the different crack formations, stiffness deteriorations, load-deflection characteristics and energy properties. It is shown that vertical slits do not produce improvements to the lateral response of wall panels. The application of vertical loads is beneficial and the lengthening of the vertical slits to full panel height is detrimental to the behaviour of the wall panels. </p> / Thesis / Master of Engineering (ME)
26

Analyse numérique de la réponse des pieux sous sollicitations latérales

Hazzar, Lassaad January 2014 (has links)
Résumé : Afin de contribuer dans la réponse latérale des pieux sous sollicitations latérales et notamment prendre en compte des plusieurs paramètres en relation avec les pieux (matériau, diamètre, rigidité, inclinaison) et le sol (nature, rigidité), des analyses numériques en différences finies 2D et 3D ont été réalisées en considérant des pieux chargés latéralement et ancrés dans des sols sableux, argileux et même sableux-argileux. Des modèles numériques simulés avec les codes en différences finies FLAC pour l’analyse 2D et FLAC[indice supérieur 3D] pour l’analyse 3D ont été inspirés des modèles de pieux réduits et en vraie grandeur, faisant l’objet de publications. Des enregistrements du déplacement latéral ou/et de la capacité latérale ou/et du moment fléchissant des pieux considérés ont été pris lors de ces essais. Ces modèles numériques ont été validés à travers diverses comparaisons entre les mesures, les calculs de FLAC et/ou FLAC3D et dans des cas les calculs d’autres méthodes utilisées dans la pratique. Une comparaison entre l’analyse 2D et l’analyse 3D de la réponse latérale d’un pieu rigide chargé latéralement dans un sol cohérent, a été réalisée dans le but de connaître les limites de l’analyse 2D et la possibilité de corréler ses résultats à ceux de l’analyse 3D. L’influence de la charge verticale sur la réponse latérale (capacité latérale et moment fléchissant maximal) d’un pieu en béton, chargé latéralement dans des sols sableux et argileux, a été étudiée avec une analyse numérique 3D. Il a été démontré que pour le cas des sols sableux, la charge verticale n’a pas un effet considérable sur la réponse latérale des pieux soumis à des charges latérales. Par contre, la charge verticale conduit à une diminution significative de la capacité latérale des pieux dans des sols argileux. Il est également constaté que l'influence des charges verticales sur la réponse latérale du pieu installé dans une argile surconsolidée avec une résistance au cisaillement non drainée proportionnelle à la profondeur et un OCR variant de 1,5 à 4,0 est très différent de celle correspondante à une résistance au cisaillement non drainée constante quelle que soit la valeur d’OCR. Des analyses 3D ont été, également, effectuées pour étudier la réponse latérale de pieux inclinés et chargés latéralement. La capacité latérale des pieux inclinés dans les sols sableux est considérablement augmentée avec l’augmentation de la valeur de l’inclinaison du pieu correspondante à la direction opposée à la direction de la charge latérale, et la densité du sable. Mais lorsque la direction de l’inclinaison du pieu et la même que celle correspondante à la charge latérale, cette capacité latérale est légèrement à modérément augmentée tout dépendamment de la valeur et le signe de l'angle ainsi que de la densité du sable. L’influence de l’angle d’inclinaison associé avec la charge verticale sur la capacité latérale de pieux inclinés est aussi très importante pour les sols sableux. Pour les sols argileux, l'influence de l'angle d’inclinaison sur la capacité latérale dépend seulement de l'angle d’inclinaison. En effet, la capacité latérale est modérément augmentée. Par contre, L'effet combiné de l’angle et la charge verticale est assez important. // Abstract : This thesis pertains to numerical analyses conducted primarily to evaluate the lateral response of piles and the contribution of several parameters related to piles (e.g., material, diameter, stiffness, inclination) and the soil (e.g., type, rigidity). Numerical finite differences analysis in 2D and 3D have been performed modelizing laterally loaded piles in sandy, clayey, and even sandy-clayey soils. Numerical models, simulated with finite difference codes FLAC for analysis in 2D and FLAC[superscript 3D] for 3D analysis, were inspired from experimental laboratory and full scale models available in literature. Measurements of lateral deflection and/or lateral capacity and/or bending moment of tested piles were recorded during these tests. These numerical models have been validated through comparison between the various measurements, predictions with FLAC and/or FLAC3D and for some cases the calculations with other methods used in practice. Comparison between 2D and 3D analyses of the response of laterally loaded rigid piles in cohesive soils, was performed in order to investigate the 2D analysis limitations and the possibility of correlating the 2D results with those of 3D analysis. A series of 3D finite differences analyses is also conducted to evaluate the influence of vertical loads on the lateral response of pile foundations. Numerical results have shown that the lateral resistance of the piles does not appear to vary considerably with the vertical load in sandy soil especially at loosest stat. However, vertical load leads to a significant decrease in lateral capacity of piles in homogeneous and inhomogeneous clay layers. It is also found that the influence of vertical loads on the lateral response of pile installed in over-consolidated clay with undrained strength proportional to depth and different OCR in the range of 1.5 to 4.0 is quite different from that with constant undrained strength regardless the adopted OCR value. The 3D finite difference analyses have been, also, carried out to investigate the lateral response of battered piles. The lateral capacity of the battered piles in sandy soils is considerably increased when the value of pile inclination corresponding to the opposite direction of the lateral load increases and when the sand density increases. But in the case of pile inclination corresponding to the same direction of the lateral load, the lateral capacity is slightly increased regardless to the adopted value of batter angle and the sand density. In clayey soil, it was found that the influence of the batter angle on the lateral capacity of piles depends only on the batter angle and not on the clay rigidity. For the case of pile inclination corresponding to the opposite direction of the lateral load, the lateral capacity is moderately increased and for the other case of inclination, the effects are not significant. The influence of both batter angle and vertical load on lateral capacity of battered pile in clayey soils is moderately pronounced.
27

Behavior of Non-Ductile Slender Reinforced Concrete Columns Retrofit by CFRP Under Cyclic Loading

Aules, Wisam Amer 14 March 2019 (has links)
In the Middle East region and many countries in the world, older reinforced concrete (RC) columns are deemed to be weak in seismic resistance because of their low amount of reinforcement, low grades of concrete, and large spacing between the transverse reinforcement. The capacity of older RC columns that are also slender is further reduced due to the secondary moments. Appropriate retrofit techniques can improve the capacity and behavior of concrete members. In this study, externally bonded Carbon Fiber Reinforced Polymer (CFRP) retrofit technique was implemented to improve the behavior of RC columns tested under constant axial load and cyclic lateral load. The study included physical testing of five half-scale slender RC columns, with shear span to depth ratio of 7. Three specimens represented columns in a 2-story, and two specimens represented columns in a 4-story building. All specimens had identical cross sections, reinforcement detail, and concrete strength. Two specimens were control, two specimens were retrofit with CFRP in the lateral direction, and one specimen retrofit in the longitudinal and lateral directions. A computer model was created to predict the lateral load-displacement relations. The experimental results show improvement in the retrofit specimens in strength, ductility, and energy dissipation. The effect of retrofitting technique applied to two full-scale prototype RC buildings, a 2-story and a 4-story building located in two cities in Iraq, Baghdad, and Erbil, was determined using SAP2000.
28

Effects of soil slope on the lateral capacity of piles in cohesionless soils

Barker, Paul D. (Paul David) 12 March 2012 (has links)
Deep foundations, including driven piles, are used to support vertical loads of structures and applied lateral forces. Many pile supported structures, including bridges, are subjected to large lateral loads in the form of wind, wave, seismic, and traffic impact loads. In many practical situations, structures subjected to lateral loading are located near or in excavated and fill slopes or embankments. Full-scale research to examine the effects of soil slope on lateral pile capacity is limited. The purpose of this study is to examine the effects on lateral capacity of piles located in or near cohesionless soil slopes. A full-scale lateral load testing program was undertaken on pipe piles in a cohesionless soil at Oregon State University. Five piles were tested near a 2H:1V test slope and located between 0D to 8D behind the slope crest, where D is the pile diameter. Two vertical baseline piles and three battered piles were also tested in level ground conditions. The cohesionless backfill soil was a well-graded material with a fines content of less than 10% and a relative compaction of 95%, meeting the Caltrans specification for structural backfill. Data collected from the instrumented piles was used to back calculate p-y curves, load-displacement curves, reduction factors, and load resistance ratios for each pile. The effects of slope on lateral pile capacity are insignificant at displacements of less than 2.0 inches for piles located 2D and further from the crest. For pile located at 4D or greater from the slope crest, the effect of slope is insignificant on p-y curves. A simplified p-multiplier design procedure derived from back-calculated p-y curves is proposed to account for the effects of soil slope. Comparisons of the full-scale results were made using proposed recommendations from the available literature. Lateral resistance ratios obtained by computer, centrifuge, and small scale-models tend to be conservative and overestimate the effects of slope on lateral capacities. Standard cohesionless p-y curve methods slightly over predict the soil resistance at very low displacements but significantly under predict the ultimate soil resistance. Available reduction factors from the literature, or p-multipliers, are slightly conservative and compare well with the back-calculated p-y curves from this study. / Graduation date: 2012
29

Lateral torsional buckling of rectangular reinforced concrete beams

Kalkan, Ilker 10 November 2009 (has links)
The study presents the results of an experimental and analytical investigation aimed at examining the lateral stability of rectangular reinforced concrete slender beams. In the experimental part of the investigation, a total of eleven reinforced concrete beams having a depth to width ratio between 10.20 and 12.45 and a length to width ratio between 96 and 156 were tested. Beam thickness, depth and unbraced length were 1.5 to 3.0 in., 18 to 44 in., and 12 to 39.75 ft, respectively. Each beam was subjected to a single concentrated load applied at midspan by means of a gravity load simulator that allowed the load to always remain vertical when the section displaces out of plane. The loading mechanism minimized the lateral translational and rotational restraints at the load application point to simulate the nature of gravity load. Each beam was simply-supported in and out of plane at the ends. The supports allowed warping deformations, yet prevented twisting rotations at the beam ends. In the analytical part of the study, a formula was developed for determining the critical loads of lateral torsional buckling of rectangular reinforced concrete beams free from initial geometric imperfections. The influences of shrinkage cracking and inelastic stress-strain properties of concrete and the contribution of longitudinal reinforcement to the lateral stability are accounted for in the critical load formula. The experiments showed that the limit load of a concrete beam with initial geometric imperfections can be significantly lower than the critical load corresponding to its geometrically perfect configuration. Accordingly, a second formula was developed for the estimation of limit loads of reinforced concrete beams with initial lateral imperfections, by introducing the destabilizing effect of sweep to the critical load formula. The experimental results were compared to the proposed analytical solution and to various lateral torsional buckling solutions in the literature. The formulation proposed in the present study was found to agree well with the experimental results. The incorporation of the geometric and material nonlinearities into the formula makes the proposed solution superior to the previous lateral torsional buckling solutions for rectangular reinforced concrete beams.
30

Development of a methodology for calculating stresses in track components

Naude, Francois Paulus 28 July 2005 (has links)
An existing analytical model, in use by Spoornet for the past two decades for calculating rail stresses on railway track, was revisited and improved. The model provided engineers with an easy-to-use program for evaluating track capacity and authorizing heavier loads on track. The model was modified to calculate rail and track component stresses more accurately. These modifications include the incorporation of current best practices and presentation of guidelines for the engineer on how to determine some input parameters which are normally difficult to obtain. Firstly it was determined which input parameters the model was the most sensitive to. Thereafter it was determined whether or not the correct information would generally be readily available for those sensitive parameters. The most sensitive parameters were further investigated and test results, as well as best practice analytical methods, were used to establish nominal input values and guidelines for determining such values. This research was necessary to establish whether or not the currently used analytical model still provided railway engineers with a useful tool and whether or not more modern and popular tools could validate or replace it. After some modifications to the analytical model, it was proved that it provides engineers with a suitably accurate tool for calculating rail and track component stresses, without the need to build time-consuming models of the track under investigation. It showed that the model, after some modifications, is current with calculational methods in recent publications and provides an immediate answer to "what-if" questions without the need to run lengthy analyses. / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2006. / Mechanical and Aeronautical Engineering / unrestricted

Page generated in 0.1177 seconds