• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 58
  • 25
  • 10
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 204
  • 204
  • 50
  • 45
  • 31
  • 28
  • 27
  • 26
  • 24
  • 22
  • 18
  • 18
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Layer-by-layer Assembly of Nanobrick Wall Ultrathin Transparent Gas Barrier Films

Priolo, Morgan Alexander 2012 May 1900 (has links)
Thin layers with high barrier to oxygen and other gases are a key component to many packaging applications, such as flexible electronics, food, and pharmaceuticals. Vapor deposited thin films provide significant gas barrier, but are prone to cracking when flexed, require special, non-ambient processing environments, and can involve complex fabrication when layered with polymers. The addition of clay into polymers can enhance barrier properties relative to the neat polymer; however, these composites are subject to clay aggregation at high loadings, which leads to increased opacity and random platelet alignment that ultimately reduce barrier improvement. Layer-by-layer (LbL) assembly is capable of producing thin films that exhibit super gas barrier properties, while remaining flexible and completely transparent. Montmorillonite (MMT) clay and branched polyethylenimine (PEI) were deposited via LbL assembly to create gas barrier films that can be tailored by altering the pH of the PEI deposition solution or the concentration of the MMT suspension. Films grow linearly as a function of layers deposited, where increasing PEI pH increases spacing between clay layers and increasing MMT concentration increases thin film clay content. An oxygen transmission rate (OTR) below the detection limit of commercial instrumentation (< 0.005 cm3/m2•day•atm) is observed after 70 layers of 0.2 wt % MMT or 24 layers of 2 wt % MMT are deposited with pH 10 PEI onto 179 µm thick poly(ethylene terephthalate) (PET) film. Three-component films of PEI, poly(acrylic acid) (PAA), and MMT grow exponentially as a function of PEI/PAA/PEI/MMT quadlayers deposited. A transparent, ultrathin film of only four quadlayers deposited onto PET exhibits the lowest oxygen permeability ever reported for any thin film material, at only 51 nm thick. Finally, the first example of LbL assembly using large aspect ratio vermiculite (VMT) clay was performed. PEI/VMT films grow linearly as a function of layers deposited and exhibit 95 % light transmission with 97 wt % VMT. The barrier of these films is due to the highly aligned nanobrick wall structure that creates a tortuous path for permeating molecules. Coupling high flexibility, transparency, and barrier, these coatings are good candidates for a variety of packaging applications.
62

Stimuli Responsive Multilayer Thin Films And Microcapsules Of Polymers Via Layer-By-Layer Self-Assembly

Manna, Uttam 05 1900 (has links) (PDF)
The present thesis focuses on the selection of polymers and methods to fabricate stable and stimuli responsive multilayer self-assembly via layer-by-layer (LbL) approach. The polymers utilized in this study are biodegradable and biocompatible such as hyaluronic acid, chitosan and poly(vinyl alcohol) (PVA). The thesis is comprised of six chapters and a brief discussion on the contents of the individual chapters is given below. Chapter I reviews the LbL self-assembly approach in the context of drug delivery. The various interactions such as electrostatic, hydrogen bonding and covalent bonding involved in preparation of stable multilayer assemblies via LbL approach are discussed. Stimuli responsive behaviour of these multilayer assemblies can be tuned by choosing suitable depositing materials and method. Preparation of hollow microcapsules using LbL approach and its application in drug delivery has also been described in this chapter. Chapter II deals with the LbL assembly of a neutral polymer, poly(vinyl alcholol) (PVA). The negative charge on PVA backbone was induced by physical cross-linking with borax. The PVA-borate can undergo electrostatic interaction with positively charged chitosan in LbL process to form multilayer thin film. The thin film of PVA-borate complex/chitosan was found be responsive towards glucose concentration; disintegration of the multilayer assembly was observed at a high glucose concentration. This finding was rationalized on the basis of strong interaction of glucose with borate ions leading to dissociation of PVA-borate complex and subsequent collapse of the assembly. Thus, this multilayer self-assembly is potent for glucose triggered drug delivery. Chapter III reports the construction of a stable hydrogen bonded multilayer self-assembly based on complementary DNA base pairs (adenine and thymine) interaction. The natural polymer such as chitosan was modified with adenine whereas hyaluronic acid was modified with thymine. These two modified polymers were sequentially deposited on flat substrate and melamine formaldehyde (MF) particles; wherein strong interaction among the DNA base pairs led to the formation of stable assembly without utilizing any external cross-linking agent. The modified polymers are non-cytotoxic as proved from MTT assay. Further the multilayer assembly was used for pH responsive anticancer drug doxorubicin hydrochloride (DOX) release. In Chapter IV, glutaraldehyde mediated LbL self-assembly of single polymer multilayer thin films on flat and colloidal substrate by covalent bonding is described. A comparitive study between the native polymer (chitosan) and adenine modified polymer in the growth of thin film is performed. It is established from the study that the conformation of polymer and the availability of cross-linking points on the polymer play a crucial role in controlling the growth of these multilayer assemblies. Chapter V is divided into two parts (A and B). Part A describes a simple and unique protocol for fabrication of water dispersed chitosan nanoparticles (CH NPs). The method utilized in this work is based on the fast desolvation technique without using any additional stabilizer or any sophisticated instrumental setup. Furthermore, the CH NPs prepared from the mentioned protocol were proved to be cell-viable and are found to be responsive towards pH of the solution. In part B of this chapter, the LbL self-assembly of the responsive CH NPs is fabricated via electrostatic interaction with hyaluronic acid (HA). The growth of the multilayer thin film was found to be linear as function of number of bilayers. The morphology of thin film was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The microscopic images reveal the uniform film morphology devoid of any phase separation of nanoparticles and polymers. Subsequently, the film was loaded with an anticancer therapeutic, doxorubicin hydrochloride (DOX). The release dynamics of encapsulated drug from the self-assembly are tunable and pH responsive. Chapter VI deals with the general and versatile method for the encapsulation of hydrophobic model drugs into polymeric multilayer assembly by using LbL approach. Electrical charge was induced on the surface of pyrene (uncharged organic substance) using an amphiphilic surfactant, sodium dodecyl sulfate (SDS) by micellar solubilization. The SDS micellar solution of pyrene was utilized to grow LbL multilayer thin film on a planar substrate and colloidal particles along with chitosan as a polycation. The LbL self-assembly of pyrene loaded SDS micelles/chitosan is additionally able to encapsulate hydrophobic or hydrophilic model therapeutics, thus providing an opportunity for dual-drug delivery. The desorption kinetics of the two model drugs from the thin film is found to follow a second order rate model.
63

Surface Modifications of Nanocarbon Materials for Electrochemical Capacitors

Akter, Tahmina 14 December 2010 (has links)
Multi-walled carbon nanotubes (MWCNTs) were successfully coated with two different pseudocapacitive polyoxometalates (POMs) (SiMo12O40-4 (SiMo12) and PMo12O40-3 (PMo12)) via “Layer-by-Layer” deposition. Even with merely a “single-layer” of POM, the modified nanotubes exhibited more than 2X increase in capacitance compared with that of bare nanotubes. To further improve their electrochemical performances, the deposition sequence of the POM layers was adjusted to form “alternate layer” coating to modify MWCNT. A synergistic effect on the capacitance and kinetics was observed with the alternate layer coatings. X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM) also proved the successful coating of POMs on MWCNTs. The potential-pH relationship provided important insights in terms of the deposition mechanism and suggested that the bottom layer close to the electrode substrate was the dominating layer in alternate layer coated MWCNT electrodes.
64

Surface Modifications of Nanocarbon Materials for Electrochemical Capacitors

Akter, Tahmina 14 December 2010 (has links)
Multi-walled carbon nanotubes (MWCNTs) were successfully coated with two different pseudocapacitive polyoxometalates (POMs) (SiMo12O40-4 (SiMo12) and PMo12O40-3 (PMo12)) via “Layer-by-Layer” deposition. Even with merely a “single-layer” of POM, the modified nanotubes exhibited more than 2X increase in capacitance compared with that of bare nanotubes. To further improve their electrochemical performances, the deposition sequence of the POM layers was adjusted to form “alternate layer” coating to modify MWCNT. A synergistic effect on the capacitance and kinetics was observed with the alternate layer coatings. X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM) also proved the successful coating of POMs on MWCNTs. The potential-pH relationship provided important insights in terms of the deposition mechanism and suggested that the bottom layer close to the electrode substrate was the dominating layer in alternate layer coated MWCNT electrodes.
65

New techniques for the fabrication of biosensors based on nad (P) + dependent dehydrogenases

Paulov, Valeri 28 January 2005 (has links)
DE LA TESIS EN CASTELLANOAntecedentesUn avance importante en el campo de química analítica se hizo por Clark y Lyons en los años setenta. Ellos propusieron acoplar la especificidad de la enzima glucosa oxidasa con la transducción electroquímica de la señal en "biosensores". En general, los biosensores son artefactos integrados autocontenidos, capazes de proporcionar información analítica, cuantitativa utilizando un elemento biológico de reconocimiento (receptor bioquímico) que se retiene en contacto espacial directo con un elemento de transducción. Posteriormente, los primeros biosensores de glucosa, basados en la detección amperométrica de peróxido de hidrógeno generado por glucosa oxidasa en la presencia de oxígeno fueron introducidos en el mercado por la empresa estadounidense Yellow Spring Instrument Co. (Ohio, EE. UU.) en 1975. La respuesta de biosensores electroquímicos basados en el uso de oxígeno como cosustrato para oxidasas se ve desviada por la presencia de interferencias que pueden contribuir a la corriente. Por lo tanto la superficie de electrodo debe estar protegida por una membrana no permeable por sustancias que pueden interferir con la señal. Para evitar corrientes que perjudican la selectividad de los biosensores, el potencial aplicado puede ser aminorado usando electrocatalizadores difusionales ("mediadores") en lugar de oxígeno, con un potencial redox controlable. Pero la respuesta de estos sensores también depende de la concentración de oxígeno porque este compite con los mediadores, para la reoxidación de las oxidasas. Un inconveniente adicional del uso de mediadores diffusionales artificiales en biosensores es la baja estabilidad de los mismos debida al escape de mediadores desde la superficie del electrodo cuando esto se usa en linea. Se puede aliviar este problema creando enlaces covalentes entre los mediadores y la superficie del electrodo o usando polímeros redox que se adsorben fu&#263;rtemente en la superficie del electrodo. Una de las posibles maneras para disminuir la influencia del oxígeno a la corriente de la respuesta de biosensores es el uso de las deshidrogenasas dependientes de la pareja redox NAD+/NADH. El potencial estándar redox de esta pareja es -0.56 V vs. SCE pero para conseguir la oxidación de NADH en la superficie de electrodos de carbono un sobrepotencial de +0.5 V vs. SCE debe aplicarse. Bajo estas condiciones los electrodos tienen tiempo de vida corto debido a la adsorción de los productos de oxidación en su superficie ya que la oxidación de NADH no es reversible químicamente. Por otro lado estos electrodos sufren por la oxidación no especifica de interferencias a estos potenciales de operación. Los electrodos modificados químicamente por mediadores pueden oxidar NADH a potenciales más bajos. Sin embargo, muchos de los mediadores mencionados en la bibliografía no son estables o/y no forman NAD+ enzimaticamente activo. Un problema adicional de los sistemas analíticos basados en deshidrogenasas dependientes de NAD+ es la necesidad de añadir este cofactór, que tiene alto coste y es inestable, en las muestras. Se puede inmovilizar NAD+ en la superficie de electrodos para producir biosensores capaces de funcionar en muestras que no contienen NAD+, biosensores reagentless (sin necesidad de adición de reactivos). Los métodos descritos en la bibliografía para la fabricación de biosensores reagentless se basan en cinco estrategias: (1) la inmovilización en hidrogeles formados in situ; (2) la inmovilización por una membrana; (3) la inmovilización en películas preparadas por electropolimerización; (4) la inmovilización en una pasta de carbono; (5) la inmovilización en monocapas auto ensambladas. Sólo los electrodos preparados con la estrategia (4) son biosensores reagentless con estabilidad operacional relativamente alta. Las demás estrategias no resultan en biosensores con suficiente estabilidad operacional por culpa de la perdida del mediador, de NAD+ o de la deshidrogenasa. Sin embargo la estrategia basada en electrodos de pasta de carbono no permite su aplicación a la producción de microsensores (electrodos con diámetro de menos de 10 &#61549;m) para su uso in vivo. MetodologíaEl objetivo principal de esta tesis es el desarrollo de nuevas estrategias para la fabricación de biosensores reagentless basados en deshidrogenasas dependientes de NAD+ con características mejoradas respecto a la densidad de la corriente, de la estabilidad operacional y de almacenamiento. Para cumplir el objetivo se han sintetizado dos nuevos mediadores para la oxidación de NADH: un polímero insoluble en agua [Os(1,10-fenantrolina-5,6-diona)2(PVP)4Cl]Cl, (Os-fendiona-PVP) y un complejo amfifílico [Os(1,10-fenantrolina-5,6-diona)24,4'-(n-C18H37NHCO)2bpi)](PF6)2 (Os-fendiona-surfactante). El polímero Os-fendiona-PVP fue producido vía la derivatización de poli(vinilpiridina) (peso molecular 50000) con [Os(1,10-fenantrolina-5,6-diona)2Cl2]. El estudio electroquímico de este polímero redox adsorbido en electrodos de grafito se realizó por voltametría cíclica a distintas velocidades de barrido para evaluar el número de protones y electrones que participan en la reacción redox, la influencia del pH a su potencial estándar formal, y la constante de la transferencia heterogénea del electrónes kS. Bajo bien definidas condiciones hidrodinámicas se realizaron estudios para encontrar la constante de la interacción con NADH k[NADH]=0. Os-fendiona-surfactante fue producido por la complejacion de [Os(1,10-fenantrolina-5,6-diona)2]Cl2 con el ligando hidrófobo octadodecilamida del acido 2,2'-Bipiridina-4,4'-dicarboxilico. Las monocapas de Langmuir-Blorgett de Os-fendiona-surfactante y las de su análogo [Os(bpi)24,4'-(n-C18H37NHCO)2bpi)](PF6)2 fueron estudiados en un equipo de Langmuir-Blodgett. Os-fendiona-surfactante fue aplicado a la construcción de biosensores reagentless del glutamato vía la inmovilización de glucosa deshidrogenasa y de NAD+ entre las bicapas en la fase lamelar formada por Os-fendiona-surfactante y el lípido 1,2-dioleoilo-sn-glicero-3-fosfatidilcolina. Dos métodos adicionales para la fabricación de los biosensores reagentless de glutamato y glucosa basados en deshidrogenasas fueron desarrollados. Los electrodos del grafito fueron modificados con Os-fendiona-PVP y utilizados para (a) la inmovilización de deshidrogenasa y de NAD+ en un hidrogel formado por entercruzamiento de poli(vinilpiridina) modificado por grupos amino con el éter diglicidil de poli(etilenglicol); (b) la inmovilización por adsorción de la deshidrogenasa y del ácido algínico modificado por NAD+. Se ha hecho un estudio de los biosensores reagentless para calcular sus constantes de Michaelis, el efecto del pH y de la temperatura en su respuesta y su estabilidad operacional. Además se ha comparado la estabilidad operacional a temperaturas elevadas de biosensores de la configuración (a) usando glutamato, glucosa y glucosa-6-fosfato deshidrogenasas termófilas y mesófilas. Por otro lado se han estudiado métodos nuevos para mejorar le estabilidad durante el almacenamiento de sensores de glutamato. Con este fin, se han preparado electrodos utilizando glutamato deshidrogenasa mesófila y termófila con varios estabilizadores. Conclusiones1. El polímero [Os(1,10-fenantrolina-5,6-diona)2(PVP)4Cl]Cl, (Os-fendiona-PVP) para la oxidación de NADH se puede sintetizar por la complejación de [Os(1,10-fenantrolina-5,6-diona)2Cl2] con poli(vinilpiridina). La adsorción física de este polímero sobre los electrodos de grafito desde su solución en etilenglicol resulta en la formación de una monocapa de este polimero redox en la superficie del electrodo. 2. El proceso redox de este mediador es casi-reversible e implica 4 electrones y 4 protones dentro del rango del pH de 3-6.5. El mediador pierde su estabilidad química en valores de pH más altos que 6.5. Tres ramas lineales en el diagrama de E0' frente a pH con diversas pendientes se observan. 3. La constante heterogénea de la velocidad de transferencia de electrones (kS) de Os-fendiona-PVP es del mismo orden de magnitud que la de otros mediadores capaces de oxidar NADH mencionados en la bibliografía (kS= 18±2 s-1) . 4. Os-fendiona-PVP es un electrocatalizador eficiente para la oxidación del NADH. La modificación de los electrodos del grafito con Os-fendiona-PVP conduce a la disminución del sobrepotential para la oxidación electroquímica del NADH desde +0.33 V vs. Ag/AgCl/KClsat para los electrodos no modificados hasta +0.11 V vs. Ag/AgCl/KClsat. La constante cinética para la interacción del polímero redox con el NADH (k1,[NADH]=0 = (1.9±0.2)x103 s-1 M-1) coincide prácticamente con la de Os-fendiona que sugiere que el número de los ligandos de fendiona en los complejos del osmio es proporcional a la corriente de la respuesta al NADH pero no afecta a las constantes cinéticas electroquímicas. / The objective of this work was the development of new configurations of reagentless biosensors based on NAD+ dependent dehydrogenases. These configurations are based on the immobilisation of enzyme, cofactor and the electrochemical catalyst used for its regeneration. In addition to being reagentless these configurations yielded biosensors with improved current density and operational stability compared to the state of the art. To achieve the objective two new NADH oxidising mediators were synthesised: a water insoluble polymer [Os(1,10-phenanthroline-5,6-dione)2(PVP)4Cl]Cl (Os-phendione-PVP) and an amphiphilic complex [Os(1,10-phenanthroline-5,6-dione)24,4'-(n-C18H37NHCO)2bpy)](PF6)2 (Os-phendione-surfactant). The electrochemical study of Os-phendione-PVP has revealed a rate constant for the heterogeneous electron transfer of the phendione redox couple ks = 25&#61617;2 s-1, and a second order rate constant for NADH oxidation k[NADH]=0=(1.1&#61617;0.1)x103 M-1 s-1. These constants are higher or of the same order of magnitude as those of previously described NADH oxidising mediators. The tensoactive mediators Os-phendione-surfactant and its analogue [Os(bpy)24,4'-(n-C18H37NHCO)2bpy)](PF6)2 (Os-bpy-surfactant) form very stable monolayers at the air-water interface collapsing at the surface pressure 60-65 mN m-1. The Os-phendione-surfactant was used for the construction of reagentless glutamate biosensors via the immobilisation of dehydrogenase and NAD+ between bilayers in lamellar phase formed by Os-phendione-surfactant and the lipid 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine. The resulting glutamate biosensors demonstrated maximum current density of 3.5 &#61549;A cm-2 (RSD=25%), apparent Michaelis constant of 47 mM, and operational half life of 0.5 h. In addition graphite electrodes were modified by Os-phendione-PVP and utilised for (a) immobilisation of dehydrogenase and NAD+ in a hydrogel formed by crosslinking of poly(vinylpyridine) carrying amino groups with polyethylene glycol diglycidyl ether and (b) immobilisation of dehydrogenase and an NAD+-alginic acid derivative by adsorption. The configuration (a) yielded glutamate sensors with maximum current density of 8.7 &#61549;A cm-2 (RSD=5%), apparent Michaelis constant of 9.1 mM, operational half life of 12 h and glucose sensors with maximum current density of 37 &#61549;A cm-2 (RSD=14%), apparent Michaelis constant of 4.2 mM, the operational half life of 1 h. The glutamate sensors based on the configuration (b) showed maximum current density of 15.8 &#61549;A/cm2 (RSD=21%), apparent Michaelis constant of 17.6 mM and operational half life of 1.5 h. Glucose, glucose-6-phosphate, and glutamate biosensors were prepared and characterised. The employment of the thermophilic enzymes helps to dramatically increase the operational stability of biosensors at elevated temperatures higher than 60oC. The shelf life of glutamate electrodes built with the use of thermophilic dehydrogenase was eleven times longer than this of electrodes modified with the mesophilic enzyme. The addition of the copolymer of vinyl-pyrrolidone and dimethylamino ethyl methacrylate termed as Gafquat HS100 to the enzyme also significantly improved shelf life
66

Enhancement of the Response Range and Longevity of Microparticle-based Glucose Sensors

Singh, Saurabh 2010 May 1900 (has links)
Luminescent microspheres encapsulating glucose oxidase and an oxygensensitive lumophore have recently been reported as potential implantable sensors for in vivo glucose monitoring. However, there are two main issues that must be addressed for enzymatic systems such as these to realize the goal of minimally-invasive glucose monitoring. The first issue is related to the short response range of such sensors, less than 200 mg/dL, which must be extended to cover the full physiological range (0-600 mg/dL) of glucose possible for diabetics. The second issue is concerning the short operating lifetime of these systems due to enzyme degradation (less than 7 days). Two approaches were considered for increasing the range of the sensor response; nanofilm coatings and particle porosity. In the first approach, microparticle sensors were coated with layer-by-layer deposited thin nanofilms to increase the response range. It was observed that, a precise control on the response range of such sensors can be achieved by manipulating different characteristics (e.g., thickness, deposition condition, and the outermost capping layer) of the nanofilms. However, even with 15 bilayers of poly(allylamine hydrochloride)/poly(styrene sulfonate) (PAH/PSS) nanofilm, limited range was achieved (less than 200 mg/dL). By performing extrapolation on the data obtained for the experimentally-determined response range versus the number of PAH/PSS bilayers, it was predicted that a nanofilm coating comprising of more than 60 PAH/PSS bilayers will be needed to achieve a linear response up to 600 mg/dL. Using modeling, it was realized that a more effective method for achieving a linear response up to 600 mg/dL is to employ microparticles with higher porosity. Sensors were prepared from highly porous silica microparticles (diameter = 7 mu m, porosity = 0.6) and their experimental response was determined. Not surprisingly, the experimentally determined response range of such sensors was found to be higher than 600 mg/dL. To improve the longevity of these sensors, two approaches were employed; incorporation of catalase and increasing the loading of glucose oxidase. Catalase was incorporated into microparticles, which protects the enzyme from peroxide-mediated deactivation, and thus improves the stability of such sensors. Sensors incorporating catalase were found to ~5 times more stable than the GOx-only sensors. It was theoretically predicted, that by maximizing the loading of glucose oxidase within the microparticles, the longevity of such sensors can be substantially improved. Based on this understanding, sensors were fabricated using highly porous microparticles; response range did not vary even after one month of continuous operation under normal physiological conditions. Modeling predicts that 1 mM of glucose oxidase and 1 mM of catalase would extend the operating lifetime to more than 90 days.
67

Design and Fabrication of a Membrane Integrated Microfluidic Cell Culture Device Suitable for High-Resolution Imaging

Epshteyn, Alla 31 December 2010 (has links)
Malaria remains a serious concern for people living and traveling to warm climates in Africa, Asia, and some parts of America. Understanding the mechanism of the malaria parasite in the liver phase could lead to important discoveries for preventative and treatment therapeutics before the disease develops into the blood stage. While in vitro liver cell culture models have been explored, a device that mimics the liver cell architecture with the capability of high-resolution imaging has never been created. In this research, a cell culture microfluidic device was designed and fabricated with a membrane integrated design to mimic the architecture of a liver, cell chamber dimensions affable for high-resolution imaging, and fluidic port design for optical access to both sides of the membrane for the study of malaria parasite invasion.
68

A Study of Porous Transitions of Layer-By-Layer Thin Films and Patterning Multilayers

Cho, Chungyeon 16 December 2013 (has links)
This thesis research focuses on fundamental understanding regarding the morphological transitions of weak polyelectrolyte multilayers (PEMs) formed by the layer-by-layer (LbL) electrostatic assembly of oppositely charged polymers. he first part of this thesis focuses on patterning polyelectrolyte multilayers that are able to undergo transitions from continuous films to porous materials by using hydrogel stamps. The stamping process is able to locally etch and pattern the porous transition in the LbL films by using reactive wet stamping (r-WETS). It was found that r-WETS of PEMs can also enable the modification of chemical functionality. The second part is an investigation about morphological changes of weak polyelectrolyte multilayers assembled with PAH and PAA using r-WETS in which hydrogel stamp material was soaked into various salt solutions and then applied to the LbL films. Also, in this study we presented a novel strategy to create a continuous gradient structure in thickness or porosity along the lateral direction of the thin films using concentration gradient salt stamping. The third part is an investigation regarding the mechanism of the transition from a continuous morphology to a porous morphology within weak polyelectrolyte multilayers. These morphological changes were able to be created by both acidic and basic post-assembly treatments, showing various morphological transitions from the introduction of porosity to the collapse of these porous structures and the eventual dissolution of the films. A similar observation of morphological transitions in weak polyelectrolyte multilayers was obtained by applying an electric field to the films in the fourth part of this thesis. Exposure to an electric field resulted in the creation of a porous structure, which can be ascribed to local changes in pH and subsequent structural rearrangements of the weak polyelectrolyte constituents. The final part of this thesis is to make PEMs into nanostructured matrices for inorganic synthesis. Multilayers possessing ion-exchangeable carboxylic acid groups were used for binding metal catalysts such as platinum (Pt) nanoparticles (NPs) within the film. Therefore, polyelectrolyte multilayers were able to stabilize catalytic Pt NPs in order to increase the useful time of catalyst materials suitable for use in proton exchange membrane fuel cells.
69

Layer-by-Layer Assemblies for Membrane-Based Enzymatic Catalysis

Tomaino, Andrew R 01 January 2014 (has links)
While considerable progress has been made towards understanding the effect that membrane-based layer-by-layer (LbL) immobilizations have on the activity and stability of enzymatic catalysis, detailed work is required in order to fundamentally quantify and optimize the functionalization and operating conditions that define these properties. This work aims to probe deeper into the nature of transport mechanisms by use of pressure-induced, flow-driven enzymatic catalysis of LbL-functionalized hydrophilized poly(vinyldiene) (PVDF)-poly(acrylic acid) (PAA)-poly(allylamine hydrochloride) (PAH)-glucose oxidase (GOx) membranes. These membranes were coupled in a sealed series following cellulose acetate (CA) membranes for the elimination of product accumulation within the feed-side solution during operation. At pH = 6 and T = 21oC, the enzymatic catalysis of LbL-immobilized GOx from Aspergillus niger performed remarkably well in comparison to the homogeneous-phase catalysis within an analogous aqueous solution. On average, the enzymatic turnover was 0.0123 and 0.0076 mmol/(mg-GOx)(min) for the homogeneous-phase catalysis and the LbL-immobilized catalysis, respectively. Multiple consecutive permeations resulted in replicable observed kinetic results with R2 > 0.95. Permeations taking place over the course of a three week trial period resulted in a retention of >90% normalized activity when membranes were removed when not in use and stored at -20oC, whereas the homogenous-phase kinetics dropped below 90% normalized activity in under one day.
70

Inkjet-assisted printing of encapsulated polymer/biopolymer arrays

Suntivich, Rattanon 27 August 2014 (has links)
The goal of the proposed study is to understand the morphology, physical, and responsive properties of synthetic polymer and biopolymer layer-by-layer (LbL) arrays using the inkjet printing and stamping technique, in order to develop patterned encapsulated thin films for controlled release and biosensor applications. In this study, we propose facile fabrication processes of hydrogen-bonded and electrostatic LbL microscopic dot arrays with encapsulated target organic and cell compounds. We study encapsulation with the controllable release and diffusion properties ofpoly(vinylpyrrolidone) (PVPON), poly(methacrylic acid) (PMAA), silk-polylysine, silk-polyglutamic acid, pure silk films, and E-coli cells from the multi-printing process. Specifically, we investigate the effect of thickness, the number of bilayers, and the hydrophobicity of substrates on the properties of inkjet/stamping multilayer films such as structural stability, responsiveness, encapsulation efficiency, and biosensing properties. We suggest that a more thorough understanding of the LbL assembly using inkjet printing and stamping techniques can lead to the development of encapsulation technology with no limitations on either the concentration of loading, or the chemical and physical properties of the encapsulated materials. In addition, this study offers new encapsulation concepts with simple, cost effective, highly scalable, living cell-friendly, and controllable patterning properties.

Page generated in 0.0447 seconds