• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of and biological nitrogen removal from landfill leachate.

January 1996 (has links)
by Tong Suk Wah. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 196-206). / Abstract --- p.i / Acknowledgments --- p.iv / Table of Contents --- p.v / List of Abbreviations --- p.ix / List of Tables --- p.xi / List of Figures --- p.xv / Chapter 1 --- Introduction / Chapter 1.1 --- Landfilling in Hong Kong --- p.1 / Chapter 1.2 --- Generation of Landfill Leachate --- p.3 / Chapter 1.3 --- Composition of Landfill Leachate --- p.6 / Chapter 1.4 --- Toxicity of Landfill Leachate --- p.12 / Chapter 1.5 --- Treatment of Landfill Leachate --- p.15 / Chapter 1.5.1 --- Physico-chemical treatment --- p.16 / Chapter 1.5.1.1 --- Coagulation/Flocculation/Precipitation --- p.16 / Chapter 1.5.1.2 --- Oxidation --- p.18 / Chapter 1.5.1.3 --- Activated carbon adsorption --- p.19 / Chapter 1.5.1.4 --- Ammonia stripping --- p.20 / Chapter 1.5.1.5 --- Reverse osmosis --- p.21 / Chapter 1.5.2 --- Biological treatment --- p.22 / Chapter 1.5.2.1 --- Aerobic treatment --- p.22 / Chapter 1.5.2.1.1 --- Activated sludge system --- p.23 / Chapter 1.5.2.1.2 --- Aeration lagoon --- p.25 / Chapter 1.5.2.1.3 --- Sequencing batch reactor --- p.26 / Chapter 1.5.2.1.4 --- Trickling filter --- p.27 / Chapter 1.5.2.1.5 --- Rotating biological contactor --- p.27 / Chapter 1.5.2.2 --- Anaerobic treatment --- p.29 / Chapter 1.5.3 --- Co-treatment with municipal wastewater --- p.32 / Chapter 1.5.4 --- Recirculation --- p.33 / Chapter 1.5.5 --- Irrigation --- p.34 / Chapter 1.6 --- Aims of the Thesis --- p.35 / Chapter 2 --- Characterization of Landfill Leachate / Chapter 2.1 --- Introduction --- p.37 / Chapter 2.2 --- Materials and Methods / Chapter 2.2.1 --- Description of landfill sites --- p.39 / Chapter 2.2.2 --- Leachate collection --- p.40 / Chapter 2.2.3 --- Chemical analysis --- p.40 / Chapter 2.2.4 --- Biological analysis --- p.41 / Chapter 2.2.5 --- Statistical analysis --- p.42 / Chapter 2.3 --- Results and Discussion / Chapter 2.3.1 --- Chemical properties of leachate --- p.43 / Chapter 2.3.2 --- Temporal variation of leachate quality --- p.61 / Chapter 2.3.3 --- Correlation of leachate quality and rainfall --- p.65 / Chapter 2.3.4 --- Biological composition of leachate --- p.86 / Chapter 2.4 --- Conclusions --- p.88 / Chapter 3 --- Toxicological Analysis of Landfill Leachate / Chapter 3.1 --- Introduction --- p.92 / Chapter 3.2 --- Materials and Methods / Chapter 3.2.1 --- Leachate collection --- p.93 / Chapter 3.2.2 --- Chemical analysis --- p.94 / Chapter 3.2.3 --- Biological toxicity testing --- p.94 / Chapter 3.2.3.1 --- Microtox test --- p.95 / Chapter 3.2.3.2 --- Algal bioassay、 --- p.95 / Chapter 3.2.3.3 --- Crustacean bioassay --- p.96 / Chapter 3.2.3.4 --- Fish bioassay --- p.98 / Chapter 3.3 --- Results and Discussion / Chapter 3.3.1 --- Chemical properties of leachate --- p.99 / Chapter 3.3.2 --- Microtox test --- p.105 / Chapter 3.3.3 --- Algal bioassay --- p.108 / Chapter 3.3.4 --- Crustacean bioassay --- p.115 / Chapter 3.3.5 --- Fish bioassay --- p.115 / Chapter 3.4 --- Conclusions --- p.120 / Chapter 4 --- Nitrification of Landfill Leachate / Chapter 4.1 --- Introduction --- p.124 / Chapter 4.2 --- Materials and Methods / Chapter 4.2.1 --- Collection and analysis of leachate --- p.127 / Chapter 4.2.2 --- Set-up of nitrification system --- p.128 / Chapter 4.2.3 --- Experiment 1: Effect of additional phosphate on the rate of nitrification --- p.130 / Chapter 4.2.4 --- Experiment 2: Effect of HRT on the rate of nitrification --- p.130 / Chapter 4.2.5 --- Experiment 3: Effect of additional organic carbon on the rate of nitrification --- p.131 / Chapter 4.2.6 --- Statistical analysis --- p.131 / Chapter 4.3 --- Results and Discussion / Chapter 4.3.1 --- Chemical properties of landfill leachate --- p.132 / Chapter 4.3.2 --- Experiment 1: Effect of additional phosphate on the rate of nitrification --- p.132 / Chapter 4.3.3 --- Experiment 2: Effect of HRT on the rate of nitrification --- p.144 / Chapter 4.3.4 --- Experiment 3: Effect of additional organic carbon on the rate of nitrification --- p.154 / Chapter 4.3.5 --- Inhibition of free ammonia and nitrous acid --- p.162 / Chapter 4.3.6 --- Fate of ammonia --- p.166 / Chapter 4.4 --- Conclusions --- p.170 / Chapter 5 --- Denitrification of Nitrified Leachate / Chapter 5.1 --- Introduction --- p.172 / Chapter 5.2 --- Materials and Methods / Chapter 5.2.1 --- Collection and analysis of landfill leachate --- p.175 / Chapter 5.2.2 --- Set-up of treatment system --- p.176 / Chapter 5.2.3 --- Statistical analysis --- p.178 / Chapter 5.3 --- Results and Discussion / Chapter 5.3.1 --- Performance of nitrification system --- p.178 / Chapter 5.3.2 --- Performance of denitrification system --- p.181 / Chapter 5.3.3 --- Improvement of treatment efficiency --- p.187 / Chapter 5.4 --- Conclusions --- p.190 / Chapter 6 --- General Conclusions --- p.192 / References --- p.196 / Appendices / "Appendix 1 Medium for enumeration of heterotrophic bacteria, fungi, carbohydrate-utilizing bacteria, protein-utilizing bacteria and lipid-utilizing bacteria" --- p.207 / Appendix 2 Preparation of Bristol's medium --- p.210 / Appendix 3 Enumeration of ammonia oxidizers by Most Probable Number Method --- p.211 / Appendix 4 Enumeration of nitrite oxidizers by Most Probable Number Method --- p.214
2

Chemical and ecotoxicological characterization of landfill leachate.

January 2004 (has links)
Wong Shiu Kai Raymond. / Thesis submitted in: July 2003. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 147-157). / Abstracts in English and Chinese. / ABSTRACT --- p.I / ACKNOWLEDGEMENTS --- p.V / TABLE OF CONTENTS --- p.VI / LIST OF ABBREVIATIONS --- p.IX / LIST OF TABLES --- p.X / LIST OF FIGURES --- p.XII / LIST OF PLATES --- p.XVII / Chapter 1. --- INTRODUCTION / Chapter 1.1 --- Landfilling of Solid Wastes --- p.1 / Chapter 1.2 --- Landfilling in Hong Kong --- p.3 / Chapter 1.3 --- Problems of Landfill Leachate --- p.5 / Chapter 1.4 --- Generation of Landfill Leachate --- p.6 / Chapter 1.5 --- Chemical Properties of Landfill Leachate --- p.9 / Chapter 1.6 --- Ecotoxicity of Landfill Leachate --- p.16 / Chapter 1.7 --- Identification of Leachate Toxicity / Chapter 1.7.1 --- Problem of identification of toxicants in landfill leachate --- p.21 / Chapter 1.7.2 --- Toxicity Identification Evaluation --- p.22 / Chapter 1.8 --- Aims of Thesis --- p.27 / Chapter 2. --- CHEMICAL CHARACTERIZATION OF LANDFILL LEACHATE / Chapter 2.1 --- Introduction --- p.30 / Chapter 2.2 --- Materials and Methods / Chapter 2.2.1 --- Site description --- p.33 / Chapter 2.2.2 --- Leachate collection --- p.38 / Chapter 2.2.3 --- Chemical analysis --- p.38 / Chapter 2.2.4 --- Statistical analysis --- p.41 / Chapter 2.3 --- Results and Discussion / Chapter 2.3.1 --- Chemical properties of landfill leachates --- p.41 / Chapter 2.3.2 --- Variation of chemical properties with different ages --- p.53 / Chapter 2.3.3 --- Variation of chemical properties with different season --- p.56 / Chapter 2.3.4 --- Principal Component Analysis --- p.85 / Chapter 2.4 --- Conclusions --- p.91 / Chapter 3. --- ECOTOXICOLOGICAL CHARACTERIZATION OF LANDFILL LEACHATE / Chapter 3.1 --- Introduction --- p.93 / Chapter 3.2 --- Materials and Methods / Chapter 3.2.1 --- Site description --- p.95 / Chapter 3.2.2 --- Leachate collection --- p.95 / Chapter 3.2.3 --- Toxicity tests --- p.95 / Chapter 3.2.3.1 --- Microtox® test --- p.96 / Chapter 3.2.3.2 --- Protozoan bioassay --- p.97 / Chapter 3.2.3.3 --- Algal bioassay --- p.99 / Chapter 3.2.3.4 --- Crustacean bioassays --- p.102 / Chapter 3.2.3.5 --- Statistical analysis --- p.104 / Chapter 3.3 --- Results and Discussion / Chapter 3.3.1 --- Leachate toxicity --- p.105 / Chapter 3.3.2 --- Sensitivity of tested organisms --- p.110 / Chapter 3.3.3 --- Principal Component Analysis --- p.113 / Chapter 3.3.4 --- Correlation with chemical properties --- p.116 / Chapter 3.4 --- Conclusions --- p.120 / Chapter 4. --- TOXICITY IDENTIFICATION EVALUATION OF MAJOR TOXICANTS IN LANDFILL LEACHATE / Chapter 4.1 --- Introduction --- p.122 / Chapter 4.2 --- Materials and Methods / Chapter 4.2.1 --- Site description --- p.124 / Chapter 4.2.2 --- Toxicity bioassays --- p.124 / Chapter 4.2.3 --- Phase I Toxicity characterization --- p.125 / Chapter 4.2.4 --- Phase II Toxicity identification and multiple manipulations --- p.126 / Chapter 4.2.5 --- Phase III Toxicity confirmation --- p.128 / Chapter 4.3 --- Results and Discussion / Chapter 4.3.1 --- Chemical properties of collected sample --- p.129 / Chapter 4.3.2 --- Phase I results --- p.130 / Chapter 4.3.3 --- Phase II results --- p.132 / Chapter 4.3.4 --- Phase III results --- p.138 / Chapter 4.3.5 --- Use of TIE in leachate monitoring --- p.139 / Chapter 4.4 --- Conclusions --- p.140 / Chapter 5. --- OVERALL CONCLUSIONS --- p.142 / REFERENCES --- p.147
3

Landfill leachate as a source of plant nutrients.

January 2005 (has links)
Cheng Chung-yin. / Thesis submitted in: December 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 185-195). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.vi / Table of contents --- p.viii / List of tables --- p.xi / List of figures --- p.xii / List of plates --- p.xiv / Plant species used in the experiments --- p.xv / Chapter 1 Introduction / Chapter 1.1 --- Soil wastes as an environmental challenge --- p.1 / Chapter 1.2 --- Landfilling --- p.1 / Chapter 1.2.1 --- Waste degradation --- p.4 / Chapter 1.2.2 --- Control of degradation by-products --- p.6 / Chapter 1.3 --- Landfill leach ate --- p.8 / Chapter 1.3.1 --- Generation and control of landfill leachate --- p.8 / Chapter 1.3.2 --- Leachate characterization --- p.10 / Chapter 1.3.3 --- Leachate from local landfills --- p.15 / Chapter 1.3.4 --- Leachate treatment --- p.15 / Chapter 1.4 --- Leachate irrigation --- p.16 / Chapter 1.4.1 --- Common practices of wastewater irrigation --- p.17 / Chapter 1.4.1.1 --- Spray irrigation / Chapter 1.4.1.2 --- Rapid infiltration / Chapter 1.4.1.3 --- Overland flow / Chapter 1.4.2 --- Effects of leachate irrigation --- p.19 / Chapter 1.4.2.1 --- Effect of leachate irrigation on soil percolate / Chapter 1.4.2.2 --- Effect of leachate irrigation on soil / Chapter 1.4.2.3 --- Effect of leachate irrigation on plants / Chapter 1.5 --- Landfilling in Hong Kong --- p.24 / Chapter 1.5.1 --- Climate --- p.24 / Chapter 1.5.2 --- Geography and economy --- p.25 / Chapter 1.5.3 --- Waste composition --- p.25 / Chapter 1.5.4 --- Leachate sampling sites --- p.27 / Chapter 1.6 --- Objectives of this study --- p.30 / Chapter 1.6.1 --- Knowledge gaps --- p.30 / Chapter 1.6.2 --- Project outline --- p.33 / Chapter Chapter 2 --- Phytotoxicity evaluation of landfill leachate using seed germination tests / Chapter 2.1 --- Introduction --- p.34 / Chapter 2.1.1 --- Tests involving the use of germinating seeds --- p.34 / Chapter 2.1.2 --- Importance of germination to plants --- p.34 / Chapter 2.1.3 --- Advantages of germination tests --- p.35 / Chapter 2.1.4 --- Limitations of using germination as an endpoint --- p.35 / Chapter 2.1.5 --- Methods of germination test --- p.36 / Chapter 2.1.5.1 --- Test design / Chapter 2.1.5.2 --- Plant species / Chapter 2.1.5.3 --- Measurement endpoints / Chapter 2.1.5.4 --- Statistical analysis and test endpoints / Chapter 2.2 --- Objectives of study --- p.41 / Chapter 2.3 --- Materials and methods --- p.42 / Chapter 2.3.1 --- Sample collection --- p.42 / Chapter 2.3.2 --- Chemical analysis --- p.42 / Chapter 2.3.3 --- Statistical analysis --- p.43 / Chapter 2.3.4 --- Phytotoxicity assay --- p.43 / Chapter 2.4 --- Results and discussion --- p.44 / Chapter 2.4.1 --- Leachate characterization --- p.44 / Chapter 2.4.1.1 --- Comparison among landfill sites / Chapter 2.4.2 --- Phytotoxicity assay --- p.51 / Chapter 2.4.2.1 --- Dose response relationships / Chapter 2.4.2.2 --- Implication of hormetic-like response on the selection of statistical model / Chapter 2.4.2.3 --- Phytotoxicity of leachate samples / Chapter 2.4.2.4 --- Comparison between species / Chapter 2.5 --- Conclusions --- p.65 / Chapter Chapter 3 --- Leachate irrigation: Effects on plant performance and soil properties / Chapter 3.1 --- Introduction --- p.67 / Chapter 3.2 --- Materials and methods --- p.70 / Chapter 3.2.1 --- Leachate sampling and analysis --- p.70 / Chapter 3.2.2 --- Leachate irrigation experiment --- p.71 / Chapter 3.2.3 --- Soil and plant analysis --- p.73 / Chapter 3.2.3.1 --- Soil sampling and preparation / Chapter 3.2.3.2 --- Soil texture / Chapter 3.2.3.3 --- pH and electrical conductivity / Chapter 3.2.3.4 --- Organic carbon / Chapter 3.2.3.5 --- Nitrogen / Chapter 3.2.3.6 --- Phosphorus / Chapter 3.2.3.7 --- Chloride / Chapter 3.2.3.8 --- Metals / Chapter 3.2.3.9 --- Foliage analysis / Chapter 3.3 --- Results and discussion --- p.75 / Chapter 3.3.1 --- Leachate --- p.75 / Chapter 3.3.1.1 --- Chemical properties / Chapter 3.3.1.2 --- Phytotoxicity / Chapter 3.3.2 --- Plant responses --- p.79 / Chapter 3.3.2.1 --- Growth / Chapter 3.3.2.2 --- Plant survival and health / Chapter 3.3.2.3 --- Tissue contents / Chapter 3.3.2.4 --- Incorporating the results of germination tests in leachate irrigation practice / Chapter 3.3.3 --- Soil --- p.101 / Chapter 3.3.3.1 --- Initial properties / Chapter 3.3.3.2 --- Soil reaction (pH) / Chapter 3.3.3.3 --- Nitrogen / Chapter 3.3.3.4 --- Phosphorus / Chapter 3.3.3.5 --- Conductivity / Chapter 3.3.3.6 --- Chloride / Chapter 3.3.3.7 --- Metals / Chapter 3.4 --- Conclusions --- p.119 / Chapter Chapter 4 --- Fate and distribution of N after soil application of landfill leachate / Chapter 4.1 --- Introduction --- p.121 / Chapter 4.1.1 --- The needs of external N supply in ecological restoration --- p.121 / Chapter 4.1.2 --- Objectives of study --- p.122 / Chapter 4.2 --- Materials and methods --- p.123 / Chapter 4.2.1 --- Leachate --- p.124 / Chapter 4.2.2 --- Soil column --- p.124 / Chapter 4.2.3 --- Plant selection and establishment --- p.127 / Chapter 4.2.3 --- Leachate application --- p.129 / Chapter 4.2.4 --- Post irrigation harvesting and analysis --- p.130 / Chapter 4.3 --- Results and discussion --- p.130 / Chapter 4.3.1 --- Leachate --- p.130 / Chapter 4.3.2 --- Plants --- p.132 / Chapter 4.3.2.1 --- Growth / Chapter 4.3.2.2 --- Tissue N contents / Chapter 4.3.3 --- Soil and soil percolate --- p.139 / Chapter 4.3.3.1 --- Percolate volume and soil moisture / Chapter 4.3.3.2 --- pH / Chapter 4.3.3.3 --- Electrical conductivity / Chapter 4.3.3.4 --- Nitrate / Chapter 4.3.3.5 --- Ammonium / Chapter 4.3.4 --- N balance of the soil-plant system --- p.160 / Chapter 4.3.4.1 --- Change in the N capital after leachate irrigation / Chapter 4.3.4.2 --- Leaching loss / Chapter 4.3.4.3 --- Unaccountable N loss / Chapter 4.4 --- Conclusions --- p.174 / Chapter Chapter 5 --- General conclusion / Chapter 5.1 --- Summary of findings --- p.176 / Chapter 5.2 --- Ecological consequence of increased and excess N deposition --- p.179 / Chapter 5.3 --- Research prospects --- p.182 / References --- p.185

Page generated in 0.0577 seconds