• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 16
  • 16
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Determinacao dos constituintes de liga de estanho-chumbo por analise por ativacao .Uma aplicacao da cromatografia de fase reversa

POLITO, WAGNER L. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:29:35Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:59:36Z (GMT). No. of bitstreams: 1 01059.pdf: 3522359 bytes, checksum: 80d13191d759ad2cebf1784aa3cc6638 (MD5) / Dissertacao (Mestrado) / IEA/D / Instituto de Química - Universidade de São Paulo - IQ/USP
12

Solidificação unidirecional transitória de ligas peritéticas do sistema Pb-Bi / Unsteady-state unidirectional solidification of peritectic alloys of the Pb-Bi system

Castanho, Manuel António Pires 02 April 2013 (has links)
Orientador: Amauri Garcia / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-21T22:41:58Z (GMT). No. of bitstreams: 1 Castanho_ManuelAntonioPires_D.pdf: 6610836 bytes, checksum: 8e61ed4118dfb9e291856d0e0771c490 (MD5) Previous issue date: 2013 / Resumo: O resumo poderá ser visualizado no texto completo da tese digital / Abstract: The abstract is available with the full electronic document / Doutorado / Materiais e Processos de Fabricação / Doutor em Engenharia Mecânica
13

Reliability study of SnPb and SnAg solder joints in PBGA packages

Kim, Dong Hyun, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
14

Study Of Friction And Wear Behaviour Of Nano-Embedded Aluminium Alloys

Bhattacharya, Victoria 08 1900 (has links)
In general, the bearing alloys have two types of microstructure i.e., either a soft matrix with discrete hard particles or a continuous matrix of the harder metal with small amount of the softer metal finely dispersed in it. The aluminium and copper based bearing alloys which are widely studied fall in the second category. However, the bearing materials which have been studied have micron sized dispersoids. In recent times, it is possible to produce nanoscale dispersoids in a hard matrix by the novel processing route of rapid solidification. This offers an opportunity to study the small length scale effect on tribological processes. In this thesis, we deal with aluminium alloys where nanoscaled dispersions of lead, bismuth and indium are produced by rapid solidification processing. Chapter 1 of the thesis is an introduction, followed by Chapter 2, which reviews the literature on nanomaterials. Special attention is given to the monotectic system, followed by a brief description on friction and wear of materials which is necessary for our present investigation. The details of experimental and characterisation techniques are given in Chapter 3. In Chapter 4, we present a brief study of white metal bearings (babbit). Tin-based babbit of composition, Sn-6wt% Cu-llwt% Sb was studied. The study of babbit was mainly carried out with the idea that it could serve as a benchmark for subsequent studies in aluminium alloys, in terms of tribological properties. In particular, we have carried out a detailed electron microscopic investigation on the phases present in the bearing alloy. The friction and wear behaviour of this material confirms the proper calibration of our setup for wear studies. This is followed by a detailed study on the synthesis, microstructure and tribological behaviour of nanodispersed aluminium alloys, Al-6wt% Pb and Al-10wt% Pb in Chapter 5. For comparison, we have also studied melt-spun aluminium without dispersoids. Detailed electron microscopic characterisation indicates that lead has a cube on cube orientation relationship with the aluminium matrix, and the particles exhibit a lognormal distribution with the mode of the particle size distribution being 15 nm. The pin on disc results suggest a distinct lowering of coefficient of friction corresponding to pure aluminium (μ= 0.40) and as cast aluminium-lead alloys (μ= 0.41). Detailed SEM studies indicate a tribolayer consisting primarily of Al, Pb and Fe. The later comes from the counterface material. Our results clearly indicate that at an early stage, little or no oxidation takes place at the sliding interface. TEM observations indicate significant deformation of lead particles in the sub-surface region. The observations suggest spreading of the lead, which acts as a lubricating layer. Wear behaviour is primarily adhesive and follows Archard's wear law. However, the rate of wear is less than that reported by other investigators on micronsized lead dispersions in aluminium. In Chapter 6, we present the results for alloys dispersed with nanosized indium and bismuth. We show that indium particles on melt-spinning exhibit both cubic and tetragonal crystal structure. The indium particles are coarser (with a mode of 25 nm) than the lead and bismuth particles (which have mode of 15nm). The bismuth containing alloys have a lower wear rate and coefficient of friction compared to lead and indium alloys. However, both indium and bismuth particles do not follow Archard's wear law and the wear vs load graph shows a non-linear behaviour. The results are discussed in terms of known mechanisms of the coefficient of friction and wear. Chapter 7 gives the salient conclusions while in Chapter 8 we discuss some of the unanswered questions and the potential for future work in this field.
15

Reliability study of SnPb and SnAg solder joints in PBGA packages

Kim, Dong Hyun, 1968- 29 August 2008 (has links)
This study investigates the reliability of SnPb and SnAg solder joints in semiconductor packages subjected to thermal cycling. More specifically, solder joint crack growth and life are experimentally measured, and FEM models are run to explain the test results. Ultimately a life-prediction model is proposed for both SnPb and SnAg solder joint packages. Motorola 357-plastic ball grid array packages on printed wiring boards were thermal cycled with the following test parameters: SnPb and SnAg solders, three post-process conditions (aged, aircooled and quenched), four package layouts on the printed circuit boards (singledense, single-sparse, double-alternating, and double-dense), three accelerated thermal cycling protocols (0°C to 100°C, -40°C to 125°C, and -55°C to 125°C), and tests run at Motorola and the University of Texas. At predetermined thermal cycles, packages were removed from the environmental chambers, dyepenetrated, packages removed to expose the solder joints, and optical images taken. Images were processed to measure crack area, shape, orientation and length to show crack growth. Selected joints were sectioned and polished to investigate microstructure and failure modes. Selected boards were connected to an ANATECH event detector to monitor life from joint failures. FEM crack initiation and propagation models were developed to better understand failure mechanisms. Major experimental results are: 1) SnPb joints have about 50% faster crack growth rates than SnAg joints, subsequently SnPb joints have half the life of SnAg joints, 2) air-cooled and quenched packages had similar failure characteristics, but aged SnPb joints had lower life and aged SnAg joints had significantly longer life than the comparable nonaged joints, 3) double-dense package layout significantly decreased life (by 75%) over the other package layouts, which were similar to each other, 4) the test results at the two locations (UT and Motorola) were similar for SnPb solder joints, but significantly different for SnAg solder joints, and 5) the largest cracks occurred at the corners of joints just under the die edge. Major FEM simulation results are: 1) the crack initiation life of SnAg joints is approximately 100% longer than SnPb joints, 2) shear load is a major cause of crack growth, but the contribution of tensile load increases as the cracks grow, 3) primary cracks at the board interface appear to reduce the propagation rate of the primary crack on the package interface, 4) secondary cracks are suppressed when compressive stresses prevent voids from nucleating, 5) the double-dense configuration shows no PWB warping due to symmetry, and its stresses are larger than for the other package layouts, and (6) the stresses and strains for single-dense, single-sparse, and double-alternating package layouts are similar because the stresses/strains are dominated by local effects due to the CTE mismatch between the die and board. Based upon the experimental results and FEM simulations, a lifeprediction model based upon a severity metric was proposed. The metric estimates damage to the solder joints and links material properties and parameters associated with package layout and thermal test conditions to the time-dependent creep, time-independent plastic deformation, and a time-dependent and geometric effective stress of the solder. The severity metric predicted life very well for most of the data tested and was more accurate than the industry-standard life-prediction models for SnPb solder joints.
16

Thermodynamics And Microstructural Development In Immiscible Systems Processed Through Different Routes

Majumdar, Bhaskar 03 1900 (has links) (PDF)
No description available.

Page generated in 0.139 seconds