• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • 8
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 47
  • 13
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Impact Fracture of Solder Joints by Numerical Simulation Methods

Li, Bo-Yu 26 August 2005 (has links)
With electronic packaging towards the development of lead free process, the research on the portable electronic devices subject to impact load is emphasized gradually. At present, for drop test and cyclic bending test, most of the failure modes lie on the modes of "fracturing in IMC layer" or "fracturing on IMC/solder boundary". The purpose of this work is to use 3D numerical analysis software ANSYS/LS_DYNA, that were found out a proper numerical model, to further analyze the impact fracture of lead-free solder. From the numerical results, the strain rate of solder joint ranges from 103 s-1 to 104 s-1 under an impact velocity of 2 m/s. At this strain rate, the mechanical properties of solder joint could be effectively investigated. When IMC strength is smaller than 300MPa, the main failure mode is fracturing of IMC; whilst, IMC strength is greater than 300MPa, the failure mode becomes fracturing of bulk solder, but the failure mode of fracturing of IMC and a partial solder requires a model with more fine meshes to simulate. Different velocities did not affect the numerical results significantly, because the material parameters of a solder ball is strongly dependent on strain rate. Also, we found that the impact test in reality does not present a shear-dominant mode alone even when the impact angle is 0¢X. While using simulation to carry out the dynamic experiment, it can be observed that the course of solder joint suffering the damage provides a good reference and contrast for the experimental work in the future.
12

Parametric Study of Solder Ball due to Impact Test

Tao, Tsai-tsung 18 July 2006 (has links)
With the electronic packaging towards the rapid development of lead free process, the related research on the portable electronic devices subject to impact load is emphasized urgently. At present, the failure modes of fracturing in IMC layer and fracturing on IMC/solder boundary are mostly encountered due to drop test and cyclic bending test respectively. The purpose of this work is to use 3D numerical analysis software ANSYS/LS_DYNA, that were found to be a suitable numerical model for further analyzing the impact fracture of lead-free solder. The relationship between simulation and ball impact test system was compared and the effects of variable parameters on solder balls subjected to impact loading was investigated. Also, the transient deformation and fracturing of solder joints subjected to the impact load were studied numerically and experimentally. Then, the transient response and the failure modes of the solder joint due to impact load were predicted by varied strain rate tests. From the numerical results, the strain rate mechanical properties of solder joint due to high can be effectively obtained. The difference of IMC strength caused three kinds of failure modes of the solder ball, however the failure mode of fracturing in IMC and a party of solder requires a model to simulate with more refined meshes. Different velocities affected the numerical results significantly. The higher the velocity of impact test applied, the lower the impact loading received. That is mainly attributed to the material parameters adopted of a solder ball is strongly dependent on the strain rate considered. Also, it is found that the impact test in reality does not result in a shear-dominant failure mode. While using dynamic simulation instead of the experiment, the damage process of solder joint can be observed. That provides a good reference and contrast for the experimental work in the future.
13

Electrodeposition and characterisation of lead-free solder alloys for electronics interconnection

Qin, Yi January 2010 (has links)
Conventional tin-lead solder alloys have been widely used in electronics interconnection owing to their properties such as low melting temperature, good ductility and excellent wettability on copper and other substrates. However, due to the worldwide legislation addressing the concern over the toxicity of lead, the usage of lead-containing solders has been phased out, thus stimulating substantial efforts on lead-free alternatives, amongst which eutectic Sn-Ag and Sn-Cu, and particularly Sn-Ag-Cu alloys, are promising candidates as recommended by international parties. To meet the increasing demands of advanced electronic products, high levels of integration of electronic devices are being developed and employed, which is leading to a reduction in package size, but with more and more input/output connections. Flip chip technology is therefore seen as a promising technique for chip interconnection compared with wire bonding, enabling higher density, better heat dissipation and a smaller footprint. This thesis is intended to investigate lead-free (eutectic Sn-Ag, Sn-Cu and Sn-Ag-Cu) wafer level solder bumping through electrodeposition for flip chip interconnection, as well as electroplating lead-free solderable finishes on electronic components. The existing knowledge gap in the electrochemical processes as well as the fundamental understanding of the resultant tin-based lead-free alloys electrodeposits are also addressed. For the electrodeposition of the Sn-Cu solder alloys, a methanesulphonate based electrolyte was established, from which near-eutectic Sn-Cu alloys were achieved over a relatively wide process window of current density. The effects of methanesulphonic acid, thiourea and OPPE (iso-octyl phenoxy polyethoxy ethanol) as additives were investigated respectively by cathodic potentiodynamic polarisation curves, which illustrated the resultant electrochemical changes to the electrolyte. Phase identification by X-ray diffraction showed the electrodeposits had a biphasic structure (β-Sn and Cu6Sn5). Microstructures of the Sn-Cu electrodeposits were comprehensively characterised, which revealed a compact and crystalline surface morphology under the effects of additives, with cross-sectional observations showing a uniform distribution of Cu6Sn5 particles predominantly along β-Sn grain boundaries. The electrodeposition of Sn-Ag solder alloys was explored in another pyrophosphate based system, which was further extended to the application for Sn-Ag-Cu solder alloys. Cathodic potentiodynamic polarisation demonstrated the deposition of noble metals, Ag or Ag-Cu, commenced before the deposition potential of tin was reached. The co-deposition of Sn-Ag or Sn-Ag-Cu alloy was achieved with the noble metals electrodepositing at their limiting current densities. The synergetic effects of polyethylene glycol (PEG) 600 and formaldehyde, dependent on reaching the cathodic potential required, helped to achieve a bright surface, which consisted of fine tin grains (~200 nm) and uniformly distributed Ag3Sn particles for Sn-Ag alloys and Ag3Sn and Cu6Sn5 for Sn-Ag-Cu alloys, as characterised by microstructural observations. Near-eutectic Sn-Ag and Sn-Ag-Cu alloys were realised as confirmed by compositional analysis and thermal measurements. Near-eutectic lead-free solder bumps of 25 μm in diameter and 50 μm in pitch, consisting of Sn-Ag, Sn-Cu or Sn-Ag-Cu solder alloys depending on the process and electrolyte employed, were demonstrated on wafers through the electrolytic systems developed. Lead-free solder bumps were further characterised by material analytical techniques to justify the feasibility of the processes developed for lead-free wafer level solder bumping.
14

Variable Frequency Microwave Reflow of Lead-Free Solder Paste

Reid, Pamela Patrice 29 June 2004 (has links)
As the world moves towards eliminating lead from consumer products, the microelectronics industry has put effort into developing lead-free solder paste. The major drawback of lead-free solder is the problems caused by its high reflow temperature. Variable frequency microwave (VFM) processing has been shown to allow some materials to be processed at lower temperatures. Issues addressed in this study include using VFM to reduce the solder reflow temperature, comparing the heating rate of different size solder particles, and comparing the reliability of VFM reflowed solder versus conventionally reflowed solder. Results comparing the effect of particle size on the heating rate of solder showed that the differences were negligible. This is due in part to the particle sizes overlapping. Many lead-free solder pastes reflow around 250℃. Results indicate that when using the VFM, lead-free solder paste will reflow at 220℃. The reliability of solder that was reflowed using the VFM at the reduced temperature was found to be comparable to solder reflowed in a conventional manner. Based on these findings, VFM processing can eliminate the major obstacles to making lead-free solder paste a more attractive option for use in the microelectronics industry.
15

Properties of Cerium Containing Lead Free Solder

January 2012 (has links)
abstract: With increasing concerns of the intrinsic toxicity of lead (Pb) in electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) have been proposed as replacements for Pb-Sn solder and widely accepted by industry. However, they have a higher melting point and often exhibit poorer damage tolerance than Pb-Sn alloys. Recently, a new class of alloys with trace amount of rare-earth (RE) elements has been discovered and investigated. In previous work from Prof. Chawla's group, it has been shown that cerium (Ce)-based Pb-free solder are less prone to oxidation and Sn whiskering, and exhibit desirable attributes of microstructural refinement and enhanced ductility relative to lanthanum (La)-based Sn-3.9Ag-0.7Cu (SAC) alloy. Although the formation of RESn3 was believed to be directly responsible for the enhanced ductility in RE-containing SAC solder by allowing microscopic voids to nucleate throughout the solder volume, this cavitation-based mechanism needs to be validated experimentally and numerically. Additionally, since the previous study has exhibited the realistic feasibility of Ce-based SAC lead-free solder alloy as a replacement to conventional SAC alloys, in this study, the proposed objective focuses on the in in-depth understanding of mechanism of enhanced ductility in Ce-based SAC alloy and possible issues associated with integration of this new class of solder into electronic industry, including: (a) study of long-term thermal and mechanical stability on industrial metallization, (b) examine the role of solder volume and wetting behavior of the new solder, relative to Sn-3.9Ag-0.7Cu alloys, (c) conduct experiments of new solder alloys in the form of mechanical shock and electromigration. The research of this new class alloys will be conducted in industrially relevant conditions, and the results would serve as the first step toward integration of these new, next generation solders into the industry. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2012
16

Optimalizace procesu pájení ve výrobě přístrojových transformátorů / Optimization of soldering process in the production of instrument transformers

Šula, Matěj January 2014 (has links)
This diploma thesis deals with the soldering process in manufacturing instrument transformers. It summarizes the knowledge of soldering process, lead-free alloys and test methods selected solder joint. In the practical part is the analysis the manufacturing process in terms of soldering operations, testing of selected lead-free alloys, which are considered as a replacement for lead-based alloy - now used in the manufacturing process. The conclusion is optimized manufacturing process to reduce operating costs and improve quality.
17

Mechanické testování pájených spojů / Machanical testing of solder joints

Drab, Tomáš January 2012 (has links)
The project contains theoretical research of electrotechnical manufacture for lead-free reflow soldering. It contains characterization of soldering processes. Includes variations of solder paste printing, principles of part placing and also reflow soldering process. The project appoints possibilities of testing solder joints strength, mainly focused on mechanical vibrations. It describes a design and preparation of solder joint strength test methods by mechanical vibrations. It compares influence of vibrations on part types and solder alloys.
18

Optimalizace procesu montáže pouzder QFN / Optimizing of QFN Package Assembly Process

Šváb, Martin January 2014 (has links)
The Master thesis deals with technology of mounting QFN packages on to the printed circuits boards. Describes also influence of shape and size of soldering pads and the amount of soldering paste with respect to the quality and the reliability. In first part overview of existing packages is summarised. Second part describes design of testing board and the factors which leads to eliminating errors during manufacturing process.
19

4D Microstructural Characterization of Electromigration and Thermal Aging Damage in Tin-Rich Solder Joints

January 2019 (has links)
abstract: As the microelectronics industry continues to decrease the size of solder joints, each joint will have to carry a greater current density, making atom diffusion due to current flow, electromigration (EM), a problem of ever-increasing severity. The rate of EM damage depends on current density, operating temperature, and the original microstructure of the solder joint, including void volume, grain orientation, and grain size. While numerous studies have investigated the post-mortem effects of EM and have tested a range of current densities and temperatures, none have been able to analyze how the same joint evolves from its initial to final microstructure. This thesis focuses on the study of EM, thermal aging, and thermal cycling in Sn-rich solder joints. Solder joints were either of controlled microstructure and orientation or had trace alloying element additions. Sn grain orientation has been linked to a solder joints’ susceptibility to EM damage, but the precise relationship between orientation and intermetallic (IMC) and void growth has not been deduced. In this research x-ray microtomography was used to nondestructively scan samples and generate 3D reconstructions of both surface and internal features such as interfaces, IMC particles, and voids within a solder joint. Combined with controlled fabrication techniques to create comparable samples and electron backscatter diffraction (EBSD) and energy-dispersive spectroscopy (EDS) analysis for grain orientation and composition analysis, this work shows how grain structure plays a critical role in EM damage and how it differs from damage accrued from thermal effects that occur simultaneously. Unique IMC growth and voiding behaviors are characterized and explained in relation to the solder microstructures that cause their formation and the possible IMC-suppression effects of trace alloying element addition are discussed. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2019
20

Microstructural Evolution in Thermally Cycled Large-Area Lead and Lead-Free Solder Joints

Stinson-Bagby, Kelly Lucile 23 August 2002 (has links)
Currently, there are two major driving forces for considering alternative materials to lead- based products, specifically interconnections, in electronics applications, including the impending legislation or regulations which may tax, restrict, or eliminate the use of lead and the trend toward advanced interconnection technology, which may challenge the limits of present soldering technology. The reliability of solder joints is a concern because fracture failures in solder joints accounts for 70% of failures in electronic components. Lead-free solders are being investigated as replacements for lead solders currently used in electronics. Thermo-mechanical properties describe the stresses accumulated due to thermal fatigue as a result of CTE mismatch within the system. By understanding the failure mechanisms related to lead-free solders, the application of lead- free solders could be more strategically designed for specific applications. The objective of this thesis is to observe microstructural change in large-area solder joints caused by thermal cycling and relate these changes to reliability issues in large-area lead and lead-free solder constructed semiconductor power devices. This study focused on the microstructural changes within the solder alloy of a large-area solder joint under thermal cycling conditions. Two major primary observations were made from this research, they are: 1) due to a combination of testing conditions and material properties, the lead-free solders, Sn/3.5Ag and Sn/Ag/0.7Cu, sustained the most severe damage as compared to Sn/37Pb, and 2) due to elevated stresses at the solder/substrate interface in a simulated power semiconductor device sample damage was found to be most severe. / Master of Science

Page generated in 0.0817 seconds