• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 13
  • 8
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Influence of Internal Geometry on Pre-chamber Combustion Concept in a Lean Burn Natural Gas Engine

Hlaing, Ponnya 23 August 2022 (has links)
The road transport sector, dominated by internal combustion engines, accounts for as high as 23% of annual carbon emissions and is considered the major area where urgent carbon reduction strategies are required. Natural gas is considered one of the intermediate fuels to reduce carbon emissions before net carbon neutral solutions can be achieved. Methane (CH4), a major constituent of natural gas, has the highest hydrogen-to-carbon ratio among the naturally occurring hydrocarbons, and the CO2 emission from natural gas combustion is around 25% less than diesel combustion. Lean combustion shows promises for improved engine efficiency, thereby reducing carbon emissions for a given required power output. However, igniting lean natural gas mixtures requires high ignition energy, beyond the capability of spark ig nition. The pre-chamber combustion (PCC) concept can provide the required ignition energy with relatively simple components. While most pre-chamber designs found in the literature are bulky and require extensive cylinder head modifications or complete engine redesign, the narrow-throat pre-chamber design can readily fit the diesel injector pockets of most heavy-duty engines without the need for substantial hardware modifications. The unique pre-chamber design is significantly different from the contemporary pre-chamber geometries, and its engine combustion phenomena and operating characteristics are largely unknown. This thesis work investigates the effect of important pre-chamber dimensions, such as the volume, nozzle hole diameter, and throat diameter, on the engine operating characteristics and emission trends. The experiments focus on the lean operation with excess air ratios (λ) exceeding 1.6, which can be achieved by auxiliary fuel injection into the pre-chamber. The air-fuel mixture formation process inside the pre-chamber is also investigated by employing 1-D and 3-D CFD simulations, where the engine experiments provided the boundary conditions. From the simulation results, a correlation between the injected and the trapped fuel in the pre-chamber is proposed by theoretical scavenging models to estimate the air-fuel ratio in the pre-chamber with high accuracy. Although the studies largely rely on thermodynamic engine experiments, the 1-D engine simulation implements the engine studies in estimating the mixture composition and heat transfer losses from the engine.
12

Numerical Investigation on CO Emissions in Lean Premixed Combustion / 希薄予混合燃焼におけるCO排出に関する数値解析による研究

Yunoki, Keita 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23882号 / 工博第4969号 / 新制||工||1776(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 黒瀬 良一, 教授 中部 主敬, 教授 岩井 裕 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
13

Effects of the Fuel-Air Mixing on Combustion Instabilities and NOx Emissions in Lean Premixed Combustion

Estefanos, Wessam 02 June 2016 (has links)
No description available.
14

Flame structure and thermo-acoustic coupling for the low swirl burner for elevated pressure and syngas conditions

Emadi, Majid 01 December 2012 (has links)
Reduction of the pollutant emissions is a challenge for the gas turbine industry. A solution to this problem is to employ the low swirl burner which can operate at lower equivalence ratios than a conventional swirl burner. However, flames in the lean regime of combustion are susceptible to flow perturbations and combustion instability. Combustion instability is the coupling between unsteady heat release and combustor acoustic modes where one amplifies the other in a feedback loop. The other method for significantly reducing NOx and CO2 is increasing fuel reactivity, typically done through the addition of hydrogen. This helps to improve the flammability limit and also reduces the pollutants in products by decreasing thermal NOx and reducing CO2 by displacing carbon. In this work, the flammability limits of a low swirl burner at various operating conditions, is studied and the effect of pressure, bulk velocity, burner shape and percent of hydrogen (added to the fuel) is investigated. Also, the flame structure for these test conditions is measured using OH planar laser induced fluorescence and assessed. Also, the OH PLIF data is used to calculate Rayleigh index maps and to construct averaged OH PLIF intensity fields at different acoustic excitation frequencies (45-155, and 195Hz). Based on the Rayleigh index maps, two different modes of coupling between the heat release and the pressure fluctuation were observed: the first mode, which occurs at 44Hz and 55Hz, shows coupling to the flame base (due to the bulk velocity) while the second mode shows coupling to the sides of the flame. In the first mode, the flame becomes wider and the flame base moves with the acoustic frequency. In the second mode, imposed pressure oscillations induce vortex shedding in the flame shear layer. These vortices distort the flame front and generate locally compact and sparse flame areas. The local flame structure resulting from these two distinct modes was markedly different.
15

Analyse expérimentale par diagnostics lasers du mélange kérosène/air et de la combustion swirlée pauvre prémélangée, haute-pression issue d’un injecteur Low-NOx / Experimental investigation by laser diagnostics of the kerosene/air mixing and high-pressure swirl-stabilized lean premixed combustion from a low-NOx injection system

Malbois, Pierre 18 December 2017 (has links)
Les motoristes aéronautiques misent sur le développement de systèmes d’injection de carburant innovants pour réduire la consommation de carburant et les émissions de polluants. L’objectif de la thèse est de contribuer à l’étude expérimentale d’un injecteur « Lean Premixed » par le développement de diagnostics lasers couplant des approches basées sur la diffusion de Mie et l’émission fluorescente de traceurs. Les mesures ont été réalisées sur le banc de combustion haute pression HERON. Une approche novatrice avec l’imagerie de fluorescence du kérosène a permis d’obtenir une quantification du mélange kérosène/air. La structure de flamme a été mesurée simultanément par PLIF-OH et des mesures PIV de vitesse ont complété cette analyse. Un développement préliminaire de la PLIF-CO a également été mené. Les nombreuses mesures permettent de fournir une analyse détaillée des interactions flamme/spray/aérodynamique lors d’une combustion swirlée stabilisée kérosène/air à haute pression. / Aeronautical engine manufacturers are banking on the development of innovative fuel injection systems to reduce fuel consumption and pollutant emissions. The aim of the thesis is to contribute to the experimental investigation of a "Lean Premixed" injector by developing laser diagnostics coupling approaches based on Mie scattering and fluorescent emission of tracers. Measurements are performed at high pressure on the HERON combustion test bench. An innovative approach with fluorescence imaging of kerosene has resulted in the quantification of the kerosene/air mixture. The flame structure was analyzed simultaneously by OH-PLIF and velocity PIV measurements were performed to complete this analysis. A preliminary development of CO-PLIF was also conducted. The numerous measurements provided a detailed analysis of the mechanisms of flame/spray/aerodynamic interactions during a swirl-stabilized kerosene/air combustion at high pressure.

Page generated in 0.0653 seconds